sidebar
"Foundations of Black Hole Accretion Disk Theory"
Marek A. Abramowicz and P. Chris Fragile 
Abstract
1 Introduction
2 Three Destinations in Kerr’s Strong Gravity
2.1 The event horizon
2.2 The ergosphere
2.3 ISCO: the orbit of marginal stability
2.4 The Paczyński–Wiita potential
2.5 Summary: characteristic radii and frequencies
3 Matter Description: General Principles
3.1 The fluid part
3.2 The stress part
3.3 The Maxwell part
3.4 The radiation part
4 Thick Disks, Polish Doughnuts, & Magnetized Tori
4.1 Polish doughnuts
4.2 Magnetized Tori
5 Thin Disks
5.1 Equations in the Kerr geometry
5.2 The eigenvalue problem
5.3 Solutions: Shakura–Sunyaev & Novikov–Thorne
6 Slim Disks
7 Advection-Dominated Accretion Flows (ADAFs)
8 Stability
8.1 Hydrodynamic stability
8.2 Magneto-rotational instability (MRI)
8.3 Thermal and viscous instability
9 Oscillations
9.1 Dynamical oscillations of thick disks
9.2 Diskoseismology: oscillations of thin disks
10 Relativistic Jets
11 Numerical Simulations
11.1 Numerical techniques
11.2 Matter description in simulations
11.3 Polish doughnuts (thick) disks in simulations
11.4 Novikov–Thorne (thin) disks in simulations
11.5 ADAFs in simulations
11.6 Oscillations in simulations
11.7 Jets in simulations
11.8 Highly magnetized accretion in simulations
12 Selected Astrophysical Applications
12.1 Measurements of black-hole mass and spin
12.2 Black hole vs. neutron star accretion disks
12.3 Black-hole accretion disk spectral states
12.4 Quasi-Periodic Oscillations (QPOs)
12.5 The case of Sgr A*
13 Concluding Remarks
Acknowledgements
References
Footnotes
Figures
Tables

Foundations of Black Hole Accretion Disk Theory

Marek A. Abramowicz 
Physics Department, Göteborg University
SE-412-96 Göteborg, Sweden
and
N. Copernicus Astronomical Center
Bartycka 18, PL-00-716 Warszawa, Poland

'External link'http://fy.chalmers.se/~marek
and
P. Chris Fragile 
Department of Physics & Astronomy, College of Charleston
Charleston, SC 29424, USA

'External link'http://fragilep.people.cofc.edu/

Abstract

This review covers the main aspects of black hole accretion disk theory. We begin with the view that one of the main goals of the theory is to better understand the nature of black holes themselves. In this light we discuss how accretion disks might reveal some of the unique signatures of strong gravity: the event horizon, the innermost stable circular orbit, and the ergosphere. We then review, from a first-principles perspective, the physical processes at play in accretion disks. This leads us to the four primary accretion disk models that we review: Polish doughnuts (thick disks), Shakura–Sunyaev (thin) disks, slim disks, and advection-dominated accretion flows (ADAFs). After presenting the models we discuss issues of stability, oscillations, and jets. Following our review of the analytic work, we take a parallel approach in reviewing numerical studies of black hole accretion disks. We finish with a few select applications that highlight particular astrophysical applications: measurements of black hole mass and spin, black hole vs. neutron star accretion disks, black hole accretion disk spectral states, and quasi-periodic oscillations (QPOs).

Keywords: Black holes, Accretion disks

Go to first Section