sidebar

References

1 Abadie, J. et al. (LIGO Scientific Collaboration), “Calibration of the LIGO Gravitational Wave Detectors in the Fifth Science Run”, Nucl. Instrum. Methods A, 624, 223–240 (2010). [External LinkDOI], [External LinkarXiv:1007.3973 [gr-qc]].
2 Abbott, B. et al. (LIGO Scientific Collaboration), “LIGO: The Laser Interferometer Gravitational-Wave Observatory”, Rep. Prog. Phys., 72, 076901 (2009). [External LinkDOI], [External LinkarXiv:0711.3041 [gr-qc]].
3 Abramovici, A. et al., “LIGO: The Laser Interferometer Gravitational-Wave Observatory”, Science, 256, 325–333 (1992). [External LinkDOI], [External LinkADS].
4 Accadia, T. et al. (Virgo Collaboration), “Calibration and sensitivity of the Virgo detector during its second science run”, Class. Quantum Grav., 28, 025005 (2011). [External LinkDOI], [External LinkarXiv:1009.5190 [gr-qc]]. Erratum: 10.1088/0264-9381/28/7/079501.
5 Acernese, F. et al. (VIRGO Collaboration), “The Virgo Detector”, in Tricomi, A., Albergo, S. and Chiorboli, M., eds., IFAE 2005: XVII Incontri de Fisica delle Alte Energie; 17th Italian Meeting on High Energy, Catania, Italy, 30 March – 2 April 2005, AIP Conference Proceedings, 794, pp. 307–310, (American Institute of Physics, Melville, NY, 2005). [External LinkDOI].
6 Acernese, F. et al. (Virgo Collaboration), “Status of Virgo detector”, Class. Quantum Grav., 24, S381–S388 (2007). [External LinkDOI], [External LinkADS].
7 Adelberger, E.G., Heckel, B.R., Hoedl, S.A., Hoyle, C.D., Kapner, D.J. and Upadhye, A., “Particle-Physics Implications of a Recent Test of the Gravitational Inverse-Square Law”, Phys. Rev. Lett., 98, 131104 (2007). [External LinkDOI], [External LinkarXiv:hep-ph/0611223].
8 Adler, S.L., “Axial-Vector Vertex in Spinor Electrodynamics”, Phys. Rev., 177, 2426–2438 (1969). [External LinkDOI], [External LinkADS].
9 Aharony, O., Gubser, S.S., Maldacena, J.M., Ooguri, H. and Oz, Y., “Large N field theories, string theory and gravity”, Phys. Rep., 323, 183–386 (2000). [External LinkDOI], [External LinkarXiv:hep-th/9905111].
10 Akmal, A., Pandharipande, V.R. and Ravenhall, D.G., “The equation of state of nucleon matter and neutron star structure”, Phys. Rev. C, 58, 1804–1828 (1998). [External LinkDOI], [External LinkADS], [External LinkarXiv:nucl-th/9804027].
11 Alexander, S., Finn, L.S. and Yunes, N., “Gravitational-wave probe of effective quantum gravity”, Phys. Rev. D, 78, 066005 (2008). [External LinkDOI], [External LinkADS], [External LinkarXiv:0712.2542 [gr-qc]].
12 Alexander, S. and Gates Jr, S.J., “Can the string scale be related to the cosmic baryon asymmetry?”, J. Cosmol. Astropart. Phys., 2006(06), 018 (2006). [External LinkDOI], [External LinkADS], [External LinkarXiv:hep-th/0409014].
13 Alexander, S. and Martin, J., “Birefringent gravitational waves and the consistency check of inflation”, Phys. Rev. D, 71, 063526 (2005). [External LinkDOI], [External LinkarXiv:hep-th/0410230].
14 Alexander, S. and Yunes, N., “New Post-Newtonian Parameter to Test Chern-Simons Gravity”, Phys. Rev. Lett., 99, 241101 (2007). [External LinkDOI], [External LinkADS], [External LinkarXiv:hep-th/0703265].
15 Alexander, S. and Yunes, N., “Parametrized post-Newtonian expansion of Chern-Simons gravity”, Phys. Rev. D, 75, 124022 (2007). [External LinkDOI], [External LinkADS], [External LinkarXiv:0704.0299 [hep-th]].
16 Alexander, S. and Yunes, N., “Chern-Simons modified gravity as a torsion theory and its interaction with fermions”, Phys. Rev. D, 77, 124040 (2008). [External LinkDOI], [External LinkADS], [External LinkarXiv:0804.1797 [gr-qc]].
17 Alexander, S. and Yunes, N., “Chern–Simons modified general relativity”, Phys. Rep., 480, 1–55 (2009). [External LinkDOI], [External LinkADS], [External LinkarXiv:0907.2562 [hep-th]].
18 Ali-Haïmoud, Y., “Revisiting the double-binary-pulsar probe of nondynamical Chern-Simons gravity”, Phys. Rev. D, 83, 124050 (2011). [External LinkDOI], [External LinkADS], [External LinkarXiv:1105.0009 [astro-ph.HE]].
19 Ali-Haïmoud, Y. and Chen, Y., “Slowly-rotating stars and black holes in dynamical Chern-Simons gravity”, Phys. Rev. D, 84, 124033 (2011). [External LinkDOI], [External LinkADS], [External LinkarXiv:1110.5329 [astro-ph.HE]].
20 Alsing, J., Berti, E., Will, C.M. and Zaglauer, H., “Gravitational radiation from compact binary systems in the massive Brans-Dicke theory of gravity”, Phys. Rev. D, 85, 064041 (2012). [External LinkDOI], [External LinkarXiv:1112.4903 [gr-qc]].
21 Alvarez-Gaumé, L. and Witten, E., “Gravitational anomalies”, Nucl. Phys. B, 234, 269–330 (1984). [External LinkDOI], [External LinkADS].
22 Alves, M.E.S. and Tinto, M., “Pulsar Timing Sensitivities to Gravitational Waves from Relativistic Metric Theories of Gravity”, Phys. Rev. D, 83, 123529 (2011). [External LinkDOI], [External LinkADS], [External LinkarXiv:1102.4824 [gr-qc]].
23 Amaro-Seoane, P., Gair, J.R., Freitag, M., Miller, M.C., Mandel, I., Cutler, C.J. and Babak, S., “Intermediate and extreme mass-ratio inspirals – astrophysics, science applications and detection using LISA”, Class. Quantum Grav., 24, R113–R169 (2007). [External LinkDOI], [External LinkADS], [External LinkarXiv:astro-ph/0703495].
24 Amaro-Seoane, P. et al., “Low-frequency gravitational-wave science with eLISA/NGO”, Class. Quantum Grav., 29, 124016 (2012). [External LinkDOI], [External LinkADS], [External LinkarXiv:1202.0839 [gr-qc]].
25 Amaro-Seoane, P. et al., “eLISA: Astrophysics and cosmology in the millihertz regime”, GW Notes, 6, 4–110 (2013). [External LinkADS], [External LinkarXiv:1201.3621 [astro-ph.CO]]. URL (accessed 10 October 2013):
External Linkhttp://brownbag.lisascience.org/lisa-gw-notes/.
26 Amelino-Camelia, G., “Testable scenario for relativity with minimum length”, Phys. Lett. B, 510, 255–263 (2001). [External LinkDOI], [External LinkADS], [External LinkarXiv:hep-th/0012238].
27 Amelino-Camelia, G., “Doubly special relativity”, Nature, 418, 34–35 (2002). [External LinkDOI], [External LinkarXiv:gr-qc/0207049].
28 Amelino-Camelia, G., “Doubly-Special Relativity: Facts, Myths and Some Key Open Issues”, Symmetry, 2, 230–271 (2010). [External LinkDOI], [External LinkarXiv:1003.3942 [gr-qc]].
29 Amendola, L., Charmousis, C. and Davis, S.C., “Solar System Constraints on Gauss-Bonnet Mediated Dark Energy”, J. Cosmol. Astropart. Phys., 2007(10), 004 (2007). [External LinkDOI], [External LinkarXiv:0704.0175 [astro-ph]].
30 Anholm, M., Ballmer, S., Creighton, J.D.E., Price, L.R. and Siemens, X., “Optimal strategies for gravitational wave stochastic background searches in pulsar timing data”, Phys. Rev. D, 79, 084030 (2009). [External LinkDOI], [External LinkarXiv:0809.0701 [gr-qc]].
31 Apostolatos, T.A., Lukes-Gerakopoulos, G. and Contopoulos, G., “How to Observe a Non-Kerr Spacetime Using Gravitational Waves”, Phys. Rev. Lett., 103, 111101 (2009). [External LinkDOI], [External LinkADS], [External LinkarXiv:0906.0093 [gr-qc]].
32 Arkani-Hamed, N., Dimopoulos, S. and Dvali, G., “The hierarchy problem and new dimensions at a millimeter”, Phys. Lett. B, 429, 263–272 (1998). [External LinkDOI], [External LinkarXiv:hep-ph/9803315].
33 Arkani-Hamed, N., Dimopoulos, S. and Dvali, G., “Phenomenology, astrophysics, and cosmology of theories with submillimeter dimensions and TTeV scale quantum gravity”, Phys. Rev. D, 59, 086004 (1999). [External LinkDOI], [External LinkADS], [External LinkarXiv:hep-ph/9807344].
34 Arkani-Hamed, N., Georgi, H. and Schwartz, M.D., “Effective field theory for massive gravitons and gravity in theory space”, Ann. Phys. (N.Y.), 305, 96–118 (2003). [External LinkDOI], [External LinkADS], [External LinkarXiv:hep-th/0210184].
35 Arnold, V.I., “Proof of a theorem of A. N. Kolmogorov on the invariance of quasi-periodic motions under small perturbations of the Hamiltonian”, Russ. Math. Surv., 18(5), 9–36 (1963). [External LinkDOI].
36 Arun, K.G., “Generic bounds on dipolar gravitational radiation from inspiralling compact binaries”, Class. Quantum Grav., 29, 075011 (2012). [External LinkDOI], [External LinkADS], [External LinkarXiv:1202.5911 [gr-qc]].
37 Arun, K.G., Iyer, B.R., Qusailah, M.S.S. and Sathyaprakash, B.S., “Testing post-Newtonian theory with gravitational wave observations”, Class. Quantum Grav., 23, L37–L43 (2006). [External LinkDOI], [External LinkADS], [External LinkarXiv:gr-qc/0604018].
38 Arun, K.G. and Pai, A., “Tests of General Relativity and Alternative theories of gravity using Gravitational Wave observations”, Int. J. Mod. Phys. D, 22, 1341012 (2013). [External LinkDOI], [External LinkADS], [External LinkarXiv:1302.2198 [gr-qc]].
39 Arun, K.G. and Will, C.M., “Bounding the mass of the graviton with gravitational waves: effect of higher harmonics in gravitational waveform templates”, Class. Quantum Grav., 26, 155002 (2009). [External LinkDOI], [External LinkADS], [External LinkarXiv:0904.1190 [gr-qc]].
40 Arvanitaki, A. and Dubovsky, S., “Exploring the string axiverse with precision black hole physics”, Phys. Rev. D, 83, 044026 (2011). [External LinkDOI], [External LinkADS], [External LinkarXiv:1004.3558 [hep-th]].
41 Ashtekar, A., Balachandran, A.P. and Jo, S., “The CP Problem in Quantum Gravity”, Int. J. Mod. Phys. A, 4, 1493–1514 (1989). [External LinkDOI], [External LinkADS].
42 Ashtekar, A., Bojowald, M. and Lewandowski, J., “Mathematical structure of loop quantum cosmology”, Adv. Theor. Math. Phys., 7, 233–268 (2003). [External LinkarXiv:gr-qc/0304074].
43 Ashtekar, A. and Lewandowski, J., “Background independent quantum gravity: a status report”, Class. Quantum Grav., 21, R53–R152 (2004). [External LinkDOI], [External LinkarXiv:gr-qc/0404018].
44 Babak, S., Fang, H., Gair, J.R., Glampedakis, K. and Hughes, S.A., “‘Kludge’ gravitational waveforms for a test-body orbiting a Kerr black hole”, Phys. Rev. D, 75, 024005 (2007). [External LinkDOI], [External LinkarXiv:gr-qc/0607007]. Erratum: 10.1103/PhysRevD.77.049902.
45 Babichev, E. and Deffayet, C., “An introduction to the Vainshtein mechanism”, Class. Quantum Grav., 30, 184001 (2013). [External LinkDOI], [External LinkADS], [External LinkarXiv:1304.7240 [gr-qc]].
46 Balakrishna, J. and Shinkai, H., “Dynamical evolution of boson stars in Brans-Dicke theory”, Phys. Rev. D, 58, 044016 (1998). [External LinkDOI], [External LinkarXiv:gr-qc/9712065].
47 Bambi, C., Giannotti, M. and Villante, F.L., “Response of primordial abundances to a general modification of GN and/or of the early universe expansion rate”, Phys. Rev. D, 71, 123524 (2005). [External LinkDOI], [External LinkarXiv:astro-ph/0503502].
48 Bañados, M. and Ferreira, P.G., “Eddington’s Theory of Gravity and Its Progeny”, Phys. Rev. Lett., 105, 011101 (2010). [External LinkDOI], [External LinkADS], [External LinkarXiv:1006.1769 [astro-ph.CO]].
49 Barack, L. and Cutler, C., “LISA capture sources: Approximate waveforms, signal-to-noise ratios, and parameter estimation accuracy”, Phys. Rev. D, 69, 082005 (2004). [External LinkDOI], [External LinkADS], [External LinkarXiv:gr-qc/0310125].
50 Barack, L. and Cutler, C., “Using LISA extreme-mass-ratio inspiral sources to test off-Kerr deviations in the geometry of massive black holes”, Phys. Rev. D, 75, 042003 (2007). [External LinkDOI], [External LinkADS], [External LinkarXiv:gr-qc/0612029].
51 Barausse, E., Palenzuela, C., Ponce, M. and Lehner, L., “Neutron-star mergers in scalar-tensor theories of gravity”, Phys. Rev. D, 87, 081506 (2013). [External LinkDOI], [External LinkADS], [External LinkarXiv:1212.5053 [gr-qc]].
52 Barausse, E., Rezzolla, L., Petroff, D. and Ansorg, M., “Gravitational waves from extreme mass ratio inspirals in nonpure Kerr spacetimes”, Phys. Rev. D, 75, 064026 (2007). [External LinkDOI], [External LinkADS], [External LinkarXiv:gr-qc/0612123].
53 Baskaran, D., Polnarev, A.G., Pshirkov, M.S. and Postnov, K.A., “Limits on the speed of gravitational waves from pulsar timing”, Phys. Rev. D, 78, 044018 (2008). [External LinkDOI], [External LinkarXiv:0805.3103 [astro-ph]].
54 Bekenstein, J.D., “Relativistic gravitation theory for the MOND paradigm”, Phys. Rev. D, 70, 083509 (2004). [External LinkDOI], [External LinkarXiv:astro-ph/0403694].
55 Bell, J.S. and Jackiw, R., “A PCAC Puzzle: π0 γγ in the σ-Model”, Nuovo Cimento A, 60, 47–61 (1969). [External LinkDOI].
56 Bender, C.M. and Orszag, S.A., Advanced Mathematical Methods for Scientists and Engineers I: Asymptotic Methods and Perturbation Theory, International Series in Pure and Applied Mathematics, (McGraw-Hill, New York, 1978).
57 Bennett, C.L. et al. (WMAP Collaboration), “Seven-year Wilkinson Microwave Anisotropy Probe (WMAP) Observations: Are There Cosmic Microwave Background Anomalies?”, Astrophys. J. Suppl. Ser., 192, 17 (2011). [External LinkDOI], [External LinkADS], [External LinkarXiv:1001.4758 [astro-ph.CO]].
58 Berezhiani, Z., Comelli, D., Nesti, F. and Pilo, L., “Spontaneous Lorentz Breaking and Massive Gravity”, Phys. Rev. Lett., 99, 131101 (2007). [External LinkDOI], [External LinkarXiv:hep-th/0703264].
59 Berezhiani, Z., Comelli, D., Nesti, F. and Pilo, L., “Exact Spherically Symmetric Solutions in Massive Gravity”, J. High Energy Phys., 0807, 130 (2008). [External LinkDOI], [External LinkarXiv:0803.1687 [hep-th]].
60 Bergshoeff, E.A., Hohm, O. and Townsend, P.K., “New massive gravity”, in Damour, T., Jantzen, R. and Ruffini, R., eds., On Recent Developments in Theoretical and Experimental General Relativity, Astrophysics and Relativistic Field Theories, Proceedings of the MG12 Meeting on General Relativity, Paris, France, 12 – 18 July 2009, pp. 2329–2331, (World Scientific, Singapore; Hackensack, NJ, 2009). [External LinkDOI].
61 Bergshoeff, E.A., Kovacevic, M., Rosseel, J. and Yin, Y., “Massive Gravity: A Primer”, in Calcagni, G., Papantonopoulos, L., Siopsis, G. and Tsamis, N., eds., Quantum Gravity and Quantum Cosmology, Lecture Notes in Physics, 863, pp. 119–145, (Springer, Berlin; New York, 2013). [External LinkDOI], [External LinkADS].
62 Berry, C.P.L. and Gair, J.R., “Linearized f(R) gravity: Gravitational radiation and solar system tests”, Phys. Rev. D, 83, 104022 (2011). [External LinkDOI], [External LinkADS], [External LinkarXiv:1104.0819 [gr-qc]].
63 Berti, E., Buonanno, A. and Will, C.M., “Estimating spinning binary parameters and testing alternative theories of gravity with LISA”, Phys. Rev. D, 71, 084025 (2005). [External LinkDOI], [External LinkADS], [External LinkarXiv:gr-qc/0411129].
64 Berti, E., Buonanno, A. and Will, C.M., “Testing general relativity and probing the merger history of massive black holes with LISA”, Class. Quantum Grav., 22, S943–S954 (2005). [External LinkDOI], [External LinkADS], [External LinkarXiv:gr-qc/0504017].
65 Berti, E., Cardoso, J., Cardoso, V. and Cavaglià, M., “Matched filtering and parameter estimation of ringdown waveforms”, Phys. Rev. D, 76, 104044 (2007). [External LinkDOI], [External LinkADS], [External LinkarXiv:0707.1202 [gr-qc]].
66 Berti, E. and Cardoso, V., “Supermassive black holes or boson stars? Hair counting with gravitational wave detectors”, Int. J. Mod. Phys. D, 15, 2209–2216 (2006). [External LinkDOI], [External LinkADS], [External LinkarXiv:gr-qc/0605101].
67 Berti, E., Cardoso, V., Gualtieri, L., Horbatsch, M.W. and Sperhake, U., “Numerical simulations of single and binary black holes in scalar-tensor theories: Circumventing the no-hair theorem”, Phys. Rev. D, 87, 124020 (2013). [External LinkDOI], [External LinkADS], [External LinkarXiv:1304.2836 [gr-qc]].
68 Berti, E., Cardoso, V. and Starinets, A.O., “Quasinormal modes of black holes and black branes”, Class. Quantum Grav., 26, 163001 (2009). [External LinkDOI], [External LinkADS], [External LinkarXiv:0905.2975 [gr-qc]].
69 Berti, E., Cardoso, V. and Will, C.M., “Gravitational-wave spectroscopy of massive black holes with the space interferometer LISA”, Phys. Rev. D, 73, 064030 (2006). [External LinkDOI], [External LinkADS], [External LinkarXiv:gr-qc/0512160].
70 Berti, E., Gair, J.R. and Sesana, A., “Graviton mass bounds from space-based gravitational-wave observations of massive black hole populations”, Phys. Rev. D, 84, 101501 (2011). [External LinkDOI], [External LinkADS], [External LinkarXiv:1107.3528 [gr-qc]].
71 Berti, E., Gualtieri, L., Horbatsch, M.W. and Alsing, J., “Light scalar field constraints from gravitational-wave observations of compact binaries”, Phys. Rev. D, 85, 122005 (2012). [External LinkDOI], [External LinkADS], [External LinkarXiv:1204.4340 [gr-qc]].
72 Berti, E., Iyer, S. and Will, C.M., “Post-Newtonian diagnosis of quasiequilibrium configurations of neutron star–neutron star and neutron star–black hole binaries”, Phys. Rev. D, 77, 024019 (2008). [External LinkDOI], [External LinkarXiv:0709.2589 [gr-qc]].
73 Bertotti, B., Iess, L. and Tortora, P., “A test of general relativity using radio links with the Cassini spacecraft”, Nature, 425, 374–376 (2003). [External LinkDOI], [External LinkADS].
74 Bildsten, L. and Cutler, C., “Tidal interactions of inspiraling compact binaries”, Astrophys. J., 400, 175–180 (1992). [External LinkDOI], [External LinkADS].
75 Blanchet, L., “Gravitational Radiation from Post-Newtonian Sources and Inspiralling Compact Binaries”, Living Rev. Relativity, 9, lrr-2006-4 (2006). [External LinkDOI], [External LinkADS]. URL (accessed 15 April 2013):
http://www.livingreviews.org/lrr-2006-4.
76 Blas, D. and Sanctuary, H., “Gravitational radiation in Hořava gravity”, Phys. Rev. D, 84, 064004 (2011). [External LinkDOI], [External LinkarXiv:1105.5149 [gr-qc]].
77 Bojowald, M., “Loop Quantum Cosmology”, Living Rev. Relativity, 8, lrr-2005-11 (2005). [External LinkDOI], [External LinkarXiv:gr-qc/0601085]. URL (accessed 15 April 2013):
http://www.livingreviews.org/lrr-2005-11.
78 Bojowald, M. and Hossain, G.M., “Loop quantum gravity corrections to gravitational wave dispersion”, Phys. Rev. D, 77, 023508 (2008). [External LinkDOI], [External LinkADS], [External LinkarXiv:0709.2365 [gr-qc]].
79 Boulware, D.G. and Deser, S., “String-Generated Gravity Models”, Phys. Rev. Lett., 55, 2656 (1985). [External LinkDOI].
80 Boyle, L., “The general theory of porcupines, perfect and imperfect”, arXiv, e-print, (2010). [External LinkADS], [External LinkarXiv:1008.4997 [gr-qc]].
81 Boyle, L., “Perfect porcupines: ideal networks for low frequency gravitational wave astronomy”, arXiv, e-print, (2010). [External LinkADS], [External LinkarXiv:1003.4946 [gr-qc]].
82 Brans, C. and Dicke, R.H., “Mach’s Principle and a Relativistic Theory of Gravitation”, Phys. Rev., 124, 925–935 (1961). [External LinkDOI], [External LinkADS].
83 Brink, J., “Spacetime encodings. I. A spacetime reconstruction problem”, Phys. Rev. D, 78, 102001 (2008). [External LinkDOI], [External LinkarXiv:0807.1178 [gr-qc]].
84 Brink, J., “Spacetime encodings. II. Pictures of integrability”, Phys. Rev. D, 78, 102002 (2008). [External LinkDOI], [External LinkADS], [External LinkarXiv:0807.1179 [gr-qc]].
85 Brink, J., “Spacetime encodings. III. Second order Killing tensors”, Phys. Rev. D, 81, 022001 (2010). [External LinkDOI], [External LinkarXiv:0911.1589 [gr-qc]].
86 Brink, J., “Spacetime encodings. IV. The relationship between Weyl curvature and killing tensors in stationary axisymmetric vacuum spacetimes”, Phys. Rev. D, 81, 022002 (2010). [External LinkDOI], [External LinkarXiv:0911.1595 [gr-qc]].
87 Brink, J., “Formal solution of the fourth order Killing equations for stationary axisymmetric vacuum spacetimes”, Phys. Rev. D, 84, 104015 (2011). [External LinkDOI], [External LinkarXiv:0911.4161 [gr-qc]].
88 Brito, R., Cardoso, V. and Pani, P., “Massive spin-2 fields on black hole spacetimes: Instability of the Schwarzschild and Kerr solutions and bounds on graviton mass”, Phys. Rev. D, 88, 023514 (2013). [External LinkDOI], [External LinkADS], [External LinkarXiv:1304.6725 [gr-qc]].
89 Burgess, C.P., “Quantum Gravity in Everyday Life: General Relativity as an Effective Field Theory”, Living Rev. Relativity, 7, lrr-2004-5 (2004). [External LinkDOI], [External LinkarXiv:gr-qc/0311082]. URL (accessed 15 April 2013):
http://www.livingreviews.org/lrr-2004-5.
90 Calcagni, G. and Mercuri, S., “The Barbero-Immirzi field in canonical formalism of pure gravity”, Phys. Rev. D, 79, 084004 (2009). [External LinkDOI], [External LinkarXiv:0902.0957 [gr-qc]].
91 Campanelli, M. and Lousto, C.O., “Are black holes in Brans-Dicke theory precisely the same as a general relativity?”, Int. J. Mod. Phys. D, 2, 451–462 (1993). [External LinkDOI], [External LinkarXiv:gr-qc/9301013].
92 Campbell, B.A., Kaloper, N. and Olive, K.A., “Classical hair for Kerr-Newman black holes in string gravity”, Phys. Lett. B, 285, 199–205 (1992). [External LinkDOI], [External LinkADS].
93 Canizares, P., Gair, J.R. and Sopuerta, C.F., “Testing Chern-Simons modified gravity with observations of extreme-mass-ratio binaries”, J. Phys.: Conf. Ser., 363, 012019 (2012). [External LinkDOI], [External LinkADS], [External LinkarXiv:1206.0322 [gr-qc]].
94 Cardoso, V., Chakrabarti, S., Pani, P., Berti, E. and Gualtieri, L., “Floating and sinking: The Imprint of massive scalars around rotating black holes”, Phys. Rev. Lett., 107, 241101 (2011). [External LinkDOI], [External LinkADS], [External LinkarXiv:1109.6021 [gr-qc]].
95 Cardoso, V., Pani, P., Cadoni, M. and Cavaglià, M., “Ergoregion instability of ultracompact astrophysical objects”, Phys. Rev. D, 77, 124044 (2008). [External LinkDOI], [External LinkarXiv:0709.0532 [gr-qc]].
96 Cardoso, V., Pani, P., Cadoni, M. and Cavaglià, M., “Instability of hyper-compact Kerr-like objects”, Class. Quantum Grav., 25, 195010 (2008). [External LinkDOI], [External LinkarXiv:0808.1615 [gr-qc]].
97 Carson, J.E., “GLAST: Physics goals and instrument status”, J. Phys.: Conf. Ser., 60, 115–118 (2007). [External LinkDOI], [External LinkarXiv:astro-ph/0610960].
98 Carter, B., “Axisymmetric Black Hole Has Only Two Degrees of Freedom”, Phys. Rev. Lett., 26, 331–333 (1971). [External LinkDOI], [External LinkADS].
99 Chamberlin, S.J. and Siemens, X., “Stochastic backgrounds in alternative theories of gravity: overlap reduction functions for pulsar timing arrays”, Phys. Rev. D, 85, 082001 (2012). [External LinkDOI], [External LinkADS], [External LinkarXiv:1111.5661 [astro-ph.HE]].
100 Chapline, G., “Quantum Phase Transitions and the Failure of Classical General Relativity”, Int. J. Mod. Phys. A, 18, 3587–3590 (2003). [External LinkDOI], [External LinkADS], [External LinkarXiv:gr-qc/0012094].
101 Chatterji, S., Lazzarini, A., Stein, L., Sutton, P.J., Searle, A. and Tinto, M., “Coherent network analysis technique for discriminating gravitational-wave bursts from instrumental noise”, Phys. Rev. D, 74, 082005 (2006). [External LinkDOI], [External LinkarXiv:gr-qc/0605002].
102 Chatziioannou, K., Yunes, N. and Cornish, N.J., “Model-independent test of general relativity: An extended post-Einsteinian framework with complete polarization content”, Phys. Rev. D, 86, 022004 (2012). [External LinkDOI], [External LinkADS], [External LinkarXiv:1204.2585 [gr-qc]].
103 Chernoff, D.F. and Finn, L.S., “Gravitational radiation, inspiraling binaries, and cosmology”, Astrophys. J., 411, L5–L8 (1993). [External LinkDOI], [External LinkarXiv:gr-qc/9304020].
104 Chiba, T., “1∕R gravity and scalar-tensor gravity”, Phys. Lett. B, 575, 1–3 (2003). [External LinkDOI], [External LinkADS], [External LinkarXiv:astro-ph/0307338].
105 Chirenti, C.B.M.H. and Rezzolla, L., “How to tell a gravastar from a black hole”, Class. Quantum Grav., 24, 4191–4206 (2007). [External LinkDOI], [External LinkarXiv:0706.1513 [gr-qc]].
106 Choudhury, S.R., Joshi, G.C., Mahajan, S. and McKellar, B.H.J., “Probing large distance higher dimensional gravity from lensing data”, Astropart. Phys., 21, 559–563 (2004). [External LinkDOI], [External LinkarXiv:hep-ph/0204161].
107 Chouha, P.R. and Brandenberger, R.H., “T-Duality and the Spectrum of Gravitational Waves”, arXiv, e-print, (2005). [External LinkADS], [External LinkarXiv:hep-th/0508119].
108 Coleman, S.R., “Q-balls”, Nucl. Phys. B, 262, 263–283 (1985). [External LinkDOI], [External LinkADS].
109 Colladay, D. and Kostelecký, V.A., “Lorentz-violating extension of the standard model”, Phys. Rev. D, 58, 116002 (1998). [External LinkDOI], [External LinkarXiv:hep-ph/9809521].
110 Collins, J., Perez, A. and Sudarsky, D., “Lorentz invariance violation and its role in Quantum Gravity phenomenology”, in Oriti, D., ed., Approaches to Quantum Gravity: Toward a New Understanding of Space, Time and Matter, pp. 528–547, (Cambridge University Press, Cambridge; New York, 2009). [External LinkarXiv:hep-th/0603002].
111 Collins, J., Perez, A., Sudarsky, D., Urrutia, L. and Vucetich, H., “Lorentz Invariance and Quantum Gravity: An Additional Fine-Tuning Problem?”, Phys. Rev. Lett., 93, 191301 (2004). [External LinkDOI], [External LinkADS], [External LinkarXiv:gr-qc/0403053].
112 Collins, N.A. and Hughes, S.A., “Towards a formalism for mapping the spacetimes of massive compact objects: Bumpy black holes and their orbits”, Phys. Rev. D, 69, 124022 (2004). [External LinkDOI], [External LinkADS], [External LinkarXiv:gr-qc/0402063].
113 Colpi, M., Shapiro, S.L. and Wasserman, I., “Boson Stars: Gravitational Equilibria of Self-Interacting Scalar Fields”, Phys. Rev. Lett., 57, 2485–2488 (1986). [External LinkDOI], [External LinkADS].
114 Connes, A., “Gravity coupled with matter and foundation of noncommutative geometry”, Commun. Math. Phys., 182, 155–176 (1996). [External LinkDOI], [External LinkarXiv:hep-th/9603053].
115 Contaldi, C.R., Magueijo, J. and Smolin, L., “Anomalous Cosmic-Microwave-Background Polarization and Gravitational Chirality”, Phys. Rev. Lett., 101, 141101 (2008). [External LinkDOI], [External LinkarXiv:0806.3082 [astro-ph]].
116 Contopoulos, G., Lukes-Gerakopoulos, G. and Apostolatos, T.A., “Orbits in a non-Kerr Dynamical System”, Int. J. Bifurcat. Chaos, 21, 2261–2277 (2011). [External LinkADS], [External LinkarXiv:1108.5057 [gr-qc]].
117 Cooney, A., DeDeo, S. and Psaltis, D., “Gravity with Perturbative Constraints: Dark Energy Without New Degrees of Freedom”, Phys. Rev. D, 79, 044033 (2009). [External LinkDOI], [External LinkarXiv:0811.3635 [astro-ph]].
118 Cooney, A., DeDeo, S. and Psaltis, D., “Neutron stars in f(R) gravity with perturbative constraints”, Phys. Rev. D, 82, 064033 (2010). [External LinkDOI], [External LinkarXiv:0910.5480 [astro-ph.HE]].
119 Copi, C.J., Davis, A.N. and Krauss, L.M., “New Nucleosynthesis Constraint on the Variation of G”, Phys. Rev. Lett., 92, 171301 (2004). [External LinkDOI], [External LinkarXiv:astro-ph/0311334].
120 Corbin, V. and Cornish, N.J., “Pulsar Timing Array Observations of Massive Black Hole Binaries”, arXiv, e-print, (2010). [External LinkADS], [External LinkarXiv:1008.1782 [astro-ph.HE]].
121 Corda, C., “Massive relic gravitational waves from f(R) theories of gravity: Production and potential detection”, Eur. Phys. J. C, 65, 257–267 (2010). [External LinkDOI], [External LinkarXiv:1007.4077 [gr-qc]].
122 Cornish, N.J. and Crowder, J., “LISA data analysis using MCMC methods”, Phys. Rev. D, 72, 043005 (2005). [External LinkDOI], [External LinkarXiv:gr-qc/0506059].
123 Cornish, N.J. and Littenberg, T.B., “Tests of Bayesian model selection techniques for gravitational wave astronomy”, Phys. Rev. D, 76, 083006 (2007). [External LinkDOI], [External LinkarXiv:0704.1808 [gr-qc]].
124 Cornish, N.J., Sampson, L., Yunes, N. and Pretorius, F., “Gravitational wave tests of general relativity with the parameterized post-Einsteinian framework”, Phys. Rev. D, 84, 062003 (2011). [External LinkDOI], [External LinkADS], [External LinkarXiv:1105.2088 [gr-qc]].
125 Cutler, C. and Flanagan, É.É., “Gravitational waves from merging compact binaries: How accurately can one extract the binary’s parameters from the inspiral wave form?”, Phys. Rev. D, 49, 2658–2697 (1994). [External LinkDOI], [External LinkarXiv:gr-qc/9402014].
126 Cutler, C., Hiscock, W.A. and Larson, S.L., “LISA, binary stars, and the mass of the graviton”, Phys. Rev. D, 67, 024015 (2003). [External LinkDOI], [External LinkADS], [External LinkarXiv:gr-qc/0209101].
127 Cutler, C. and Vallisneri, M., “LISA detections of massive black hole inspirals: Parameter extraction errors due to inaccurate template waveforms”, Phys. Rev. D, 76, 104018 (2007). [External LinkDOI], [External LinkarXiv:0707.2982 [gr-qc]].
128 Damour, T., “The general relativistic problem of motion and binary pulsars”, in Iyer, B.R., Kembhavi, A., Narlikar, J.V. and Vishveshwara, C.V., eds., Highlights in Gravitation and Cosmology, Proceedings of the Conference on Gravitation and Cosmology held in Goa, India, December 14 – 19, 1987, pp. 393–401, (Cambridge University Press, Cambridge; New York, 1988).
129 Damour, T. and Esposito-Farèse, G., “Tensor-multi-scalar theories of gravitation”, Class. Quantum Grav., 9, 2093–2176 (1992). [External LinkDOI], [External LinkADS].
130 Damour, T. and Esposito-Farèse, G., “Nonperturbative strong-field effects in tensor-scalar theories of gravitation”, Phys. Rev. Lett., 70, 2220–2223 (1993). [External LinkDOI], [External LinkADS].
131 Damour, T. and Esposito-Farèse, G., “Tensor-scalar gravity and binary pulsar experiments”, Phys. Rev. D, 54, 1474–1491 (1996). [External LinkDOI], [External LinkarXiv:gr-qc/9602056].
132 Damour, T. and Esposito-Farèse, G., “Gravitational-wave versus binary-pulsar tests of strong-field gravity”, Phys. Rev. D, 58, 042001 (1998). [External LinkDOI], [External LinkADS], [External LinkarXiv:gr-qc/9803031].
133 Damour, T. and Polyakov, A.M., “The string dilaton and a least coupling principle”, Nucl. Phys. B, 423, 532–558 (1994). [External LinkDOI], [External LinkarXiv:hep-th/9401069].
134 Damour, T. and Polyakov, A.M., “String theory and gravity”, Gen. Relativ. Gravit., 26, 1171–1176 (1994). [External LinkDOI], [External LinkarXiv:gr-qc/9411069].
135 De Felice, A. and Tsujikawa, S., “f(R) Theories”, Living Rev. Relativity, 13, lrr-2010-3 (2010). [External LinkDOI], [External LinkADS], [External LinkarXiv:1002.4928 [gr-qc]]. URL (accessed 15 April 2013):
http://www.livingreviews.org/lrr-2010-3.
136 de Rham, C., Gabadadze, G. and Tolley, A.J., “Resummation of Massive Gravity”, Phys. Rev. Lett., 106, 231101 (2011). [External LinkDOI], [External LinkADS], [External LinkarXiv:1011.1232 [hep-th]].
137 de Rham, C., Matas, A. and Tolley, A.J., “Galileon Radiation from Binary Systems”, Phys. Rev. D, 87, 064024 (2013). [External LinkDOI], [External LinkarXiv:1212.5212 [hep-th]].
138 de Rham, C., Tolley, A.J. and Wesley, D.H., “Vainshtein mechanism in binary pulsars”, Phys. Rev. D, 87, 044025 (2013). [External LinkDOI], [External LinkarXiv:1208.0580 [gr-qc]].
139 DeDeo, S. and Psaltis, D., “Towards New Tests of Strong-field Gravity with Measurements of Surface Atomic Line Redshifts from Neutron Stars”, Phys. Rev. Lett., 90, 141101 (2003). [External LinkDOI], [External LinkADS], [External LinkarXiv:astro-ph/0302095].
140 Deffayet, C., Dvali, G., Gabadadze, G. and Vainshtein, A.I., “Nonperturbative continuity in graviton mass versus perturbative discontinuity”, Phys. Rev. D, 65, 044026 (2002). [External LinkDOI], [External LinkarXiv:hep-th/0106001].
141 Deffayet, C. and Menou, K., “Probing Gravity with Spacetime Sirens”, Astrophys. J., 668, L143–L146 (2007). [External LinkDOI], [External LinkarXiv:0709.0003 [astro-ph]].
142 Del Pozzo, W., Veitch, J. and Vecchio, A., “Testing general relativity using Bayesian model selection: Applications to observations of gravitational waves from compact binary systems”, Phys. Rev. D, 83, 082002 (2011). [External LinkDOI], [External LinkADS], [External LinkarXiv:1101.1391 [gr-qc]].
143 Deller, A.T., Verbiest, J.P.W., Tingay, S.J. and Bailes, M., “Extremely High Precision VLBI Astrometry of PSR J0437-4715 and Implications for Theories of Gravity”, Astrophys. J. Lett., 685, L67–L70 (2008). [External LinkDOI], [External LinkarXiv:0808.1594 [astro-ph]].
144 Delsate, T., Cardoso, V. and Pani, P., “Anti de Sitter black holes and branes in dynamical Chern-Simons gravity: perturbations, stability and the hydrodynamic modes”, J. High Energy Phys., 2011(06), 055 (2011). [External LinkDOI], [External LinkarXiv:1103.5756 [hep-th]].
145 Detweiler, S., “Pulsar timing measurements and the search for gravitational waves”, Astrophys. J., 234, 1100–1104 (1979). [External LinkDOI], [External LinkADS].
146 Detweiler, S.L., “Black Holes and Gravitational Waves. III. The Resonant Frequencies of Rotating Holes”, Astrophys. J., 239, 292–295 (1980). [External LinkDOI], [External LinkADS].
147 Detweiler, S.L., “Klein-Gordon Equation and Rotating Black Holes”, Phys. Rev. D, 22, 2323–2326 (1980). [External LinkDOI], [External LinkADS].
148 Dilkes, F.A., Duff, M.J., Liu, J.T. and Sati, H., “Quantum discontinuity between zero and infinitesimal graviton mass with a Lambda term”, Phys. Rev. Lett., 87, 041301 (2001). [External LinkDOI], [External LinkarXiv:hep-th/0102093].
149 Dirac, P.A.M., “The Cosmological Constants”, Nature, 139, 323 (1937). [External LinkDOI], [External LinkADS].
150 Douchin, F. and Haensel, P., “A unified equation of state of dense matter and neutron star structure”, Astron. Astrophys., 380, 151–167 (2001). [External LinkDOI], [External LinkADS], [External LinkarXiv:astro-ph/0111092].
151 Drake, S.P. and Szekeres, P., “Uniqueness of the Newman–Janis Algorithm in Generating the Kerr–Newman Metric”, Gen. Relativ. Gravit., 32, 445–458 (2000). [External LinkDOI], [External LinkarXiv:gr-qc/9807001].
152 Dreyer, O., Kelly, B.J., Krishnan, B., Finn, L.S., Garrison, D. and Lopez-Aleman, R., “Black-hole spectroscopy: Testing general relativity through gravitational-wave observations”, Class. Quantum Grav., 21, 787–804 (2004). [External LinkDOI], [External LinkADS], [External LinkarXiv:gr-qc/0309007].
153 Droz, S., Knapp, D.J., Poisson, E. and Owen, B.J., “Gravitational waves from inspiraling compact binaries: Validity of the stationary phase approximation to the Fourier transform”, Phys. Rev. D, 59, 124016 (1999). [External LinkDOI], [External LinkarXiv:gr-qc/9901076].
154 Dubeibe, F.L., Pachón, L.A. and Sanabria-Gómez, Jose D., “Chaotic dynamics around astrophysical objects with nonisotropic stresses”, Phys. Rev. D, 75, 023008 (2007). [External LinkDOI], [External LinkADS], [External LinkarXiv:gr-qc/0701065].
155 Dubovsky, S., Tinyakov, P. and Zaldarriaga, M., “Bumpy black holes from spontaneous Lorentz violation”, J. High Energy Phys., 2007(11), 083 (2007). [External LinkDOI], [External LinkarXiv:0706.0288 [hep-th]].
156 Dunkley, J. et al. (WMAP Collaboration), “Five-Year Wilkinson Microwave Anisotropy Probe Observations: Likelihoods and Parameters from the WMAP Data”, Astrophys. J. Suppl. Ser., 180, 306–329 (2009). [External LinkDOI], [External LinkarXiv:0803.0586 [astro-ph]].
157 Dvali, G., Gabadadze, G. and Porrati, M., “4D gravity on a brane in 5D Minkowski space”, Phys. Lett. B, 485, 208–214 (2000). [External LinkDOI], [External LinkarXiv:hep-th/0005016].
158 Dyda, S., Flanagan, É.É. and Kamionkowski, M., “Vacuum Instability in Chern-Simons Gravity”, Phys. Rev. D, 86, 124031 (2012). [External LinkDOI], [External LinkADS], [External LinkarXiv:1208.4871 [gr-qc]].
159 Dykla, J.J., Conserved quantities and the formation of black holes in the Brans-Dicke Theory of Gravitation, Ph.D. thesis, (California Institute of Technology, Pasadena, CA, 1972). [External LinkADS].
160 Eardley, D.M., “Observable effects of a scalar gravitational field in a binary pulsar”, Astrophys. J. Lett., 196, L59–L62 (1975). [External LinkDOI], [External LinkADS].
161 Eardley, D.M., Lee, D.L. and Lightman, A.P., “Gravitational-Wave Observations as a Tool for Testing Relativistic Gravity”, Phys. Rev. D, 8, 3308–3321 (1973). [External LinkDOI], [External LinkADS].
162 Ellis, J.A., Siemens, X. and van Haasteren, R., “An Efficient Approximation to the Likelihood for Gravitational Wave Stochastic Background Detection Using Pulsar Timing Data”, Astrophys. J., 769, 63 (2013). [External LinkDOI], [External LinkADS], [External LinkarXiv:1302.1903 [astro-ph.IM]].
163 Emparan, R., Fabbri, A. and Kaloper, N., “Quantum black holes as holograms in AdS brane worlds”, J. High Energy Phys., 2002(08), 043 (2002). [External LinkDOI], [External LinkADS], [External LinkarXiv:hep-th/0206155].
164 Faraoni, V., “Illusions of general relativity in Brans-Dicke gravity”, Phys. Rev. D, 59, 084021 (1999). [External LinkDOI], [External LinkarXiv:gr-qc/9902083].
165 Faraoni, V. and Gunzig, E., “Einstein frame or Jordan frame?”, Int. J. Theor. Phys., 38, 217–225 (1999). [External LinkDOI], [External LinkarXiv:astro-ph/9910176].
166 Faraoni, V., Gunzig, E. and Nardone, P., “Conformal transformations in classical gravitational theories and in cosmology”, Fundam. Cosmic Phys., 20, 121–175 (1999). [External LinkarXiv:gr-qc/9811047].
167 Feroz, F., Gair, J.R., Hobson, M.P. and Porter, E.K., “Use of the MultiNest algorithm for gravitational wave data analysis”, Class. Quantum Grav., 26, 215003 (2009). [External LinkDOI], [External LinkADS], [External LinkarXiv:0904.1544 [gr-qc]].
168 Ferrari, V., Gualtieri, L. and Maselli, A., “Tidal interaction in compact binaries: a post-Newtonian affine framework”, Phys. Rev. D, 85, 044045 (2012). [External LinkDOI], [External LinkarXiv:1111.6607 [gr-qc]].
169 Fierz, M. and Pauli, W., “On relativistic wave equations for particles of arbitrary spin in an electromagnetic field”, Proc. R. Soc. London, Ser. A, 173, 211–232 (1939). [External LinkDOI], [External LinkADS].
170 Figueras, P., Lucietti, J. and Wiseman, T., “Ricci solitons, Ricci flow, and strongly coupled CFT in the Schwarzschild Unruh or Boulware vacua”, Class. Quantum Grav., 28, 215018 (2011). [External LinkDOI], [External LinkarXiv:1104.4489 [hep-th]].
171 Figueras, P. and Tunyasuvunakool, S., “CFTs in rotating black hole backgrounds”, Class. Quantum Grav., 30, 125015 (2013). [External LinkDOI], [External LinkarXiv:1304.1162 [hep-th]].
172 Figueras, P. and Wiseman, T., “Gravity and large black holes in Randall-Sundrum II braneworlds”, Phys. Rev. Lett., 107, 081101 (2011). [External LinkDOI], [External LinkarXiv:1105.2558 [hep-th]].
173 Finn, L.S. and Chernoff, D.F., “Observing binary inspiral in gravitational radiation: One interferometer”, Phys. Rev. D, 47, 2198–2219 (1993). [External LinkDOI], [External LinkarXiv:gr-qc/9301003].
174 Finn, L.S. and Sutton, P.J., “Bounding the mass of the graviton using binary pulsar observations”, Phys. Rev. D, 65, 044022 (2002). [External LinkDOI], [External LinkADS], [External LinkarXiv:gr-qc/0109049].
175 Flanagan, É.É. and Hinderer, T., “Constraining neutron star tidal Love numbers with gravitational wave detectors”, Phys. Rev. D, 77, 021502 (2008). [External LinkDOI], [External LinkADS], [External LinkarXiv:0709.1915 [astro-ph]].
176 Fradkin, E.S. and Tseytlin, A.A., “Quantum string theory effective action”, Nucl. Phys. B, 261, 1–27 (1985). [External LinkDOI], [External LinkADS].
177 Freire, P.C.C. et al., “The relativistic pulsar–white dwarf binary PSR J1738+0333 – II. The most stringent test of scalar–tensor gravity”, Mon. Not. R. Astron. Soc., 423, 3328–3343 (2012). [External LinkDOI], [External LinkADS], [External LinkarXiv:1205.1450 [astro-ph.GA]].
178 Friedberg, R., Lee, T.D. and Pang, Y., “Mini-soliton stars”, Phys. Rev. D, 35, 3640–3657 (1987). [External LinkDOI], [External LinkADS].
179 Friedberg, R., Lee, T.D. and Pang, Y., “Scalar soliton stars and black holes”, Phys. Rev. D, 35, 3658–3677 (1987). [External LinkDOI], [External LinkADS].
180 Frolov, A.V. and Guo, J.-Q., “Small Cosmological Constant from Running Gravitational Coupling”, arXiv, e-print, (2011). [External LinkADS], [External LinkarXiv:1101.4995 [astro-ph.CO]].
181 Fujii, Y. and Maeda, K.-I., The Scalar-Tensor Theory of Gravitation, Cambridge Monographs on Mathematical Physics, (Cambridge University Press, Cambridge; New York, 2003). [External LinkGoogle Books].
182 Gair, J.R., Li, C. and Mandel, I., “Observable properties of orbits in exact bumpy spacetimes”, Phys. Rev. D, 77, 024035 (2008). [External LinkDOI], [External LinkADS], [External LinkarXiv:0708.0628 [gr-qc]].
183 Gair, J.R., Vallisneri, M., Larson, S.L. and Baker, J.G., “Testing General Relativity with Low-Frequency, Space-Based Gravitational-Wave Detectors”, Living Rev. Relativity, 16, lrr-2013-7 (2013). [External LinkDOI], [External LinkADS], [External LinkarXiv:1212.5575 [gr-qc]]. URL (accessed 10 October 2013):
http://www.livingreviews.org/lrr-2013-7.
184 Gair, J.R. and Yunes, N., “Approximate waveforms for extreme-mass-ratio inspirals in modified gravity spacetimes”, Phys. Rev. D, 84, 064016 (2011). [External LinkDOI], [External LinkADS], [External LinkarXiv:1106.6313 [gr-qc]].
185 Gambini, R., Rastgoo, S. and Pullin, J., “Small Lorentz violations in quantum gravity: do they lead to unacceptably large effects?”, Class. Quantum Grav., 28, 155005 (2011). [External LinkDOI], [External LinkarXiv:1106.1417 [gr-qc]].
186 Garattini, R., “Modified dispersion relations and noncommutative geometry lead to a finite Zero Point Energy”, in Kouneiher, J., Barbachoux, C., Masson, T. and Vey, D., eds., Frontiers of Fundamental Physics: The Eleventh International Symposium, Paris, France, 6 – 9 July 2010, AIP Conference Proceedings, 1446, pp. 298–310, (American Institute of Physics, Melville, NY, 2011). [External LinkDOI], [External LinkADS], [External LinkarXiv:1102.0117 [gr-qc]].
187 Garattini, R. and Mandanici, G., “Modified dispersion relations lead to a finite zero point gravitational energy”, Phys. Rev. D, 83, 084021 (2011). [External LinkDOI], [External LinkarXiv:1102.3803 [gr-qc]].
188 Garattini, R. and Mandanici, G., “Particle propagation and effective space-time in gravity’s rainbow”, Phys. Rev. D, 85, 023507 (2012). [External LinkDOI], [External LinkarXiv:1109.6563 [gr-qc]].
189 Garay, L.J. and García-Bellido, J., “Jordan–Brans–Dicke quantum wormholes and Coleman’s mechanism”, Nucl. Phys. B, 400, 416–434 (1993). [External LinkDOI], [External LinkarXiv:gr-qc/9209015].
190 Garfinkle, D., Pretorius, F. and Yunes, N., “Linear stability analysis and the speed of gravitational waves in dynamical Chern-Simons modified gravity”, Phys. Rev. D, 82, 041501 (2010). [External LinkDOI], [External LinkarXiv:1007.2429 [gr-qc]].
191 Gasperini, M. and Ungarelli, C., “Detecting a relic background of scalar waves with LIGO”, Phys. Rev. D, 64, 064009 (2001). [External LinkDOI], [External LinkarXiv:gr-qc/0103035].
192 Gates Jr, S.J., Ketov, S.V. and Yunes, N., “Seeking the Loop Quantum Gravity Barbero-Immirzi Parameter and Field in 4D, 𝒩 = 1 Supergravity”, Phys. Rev. D, 80, 065003 (2009). [External LinkDOI], [External LinkarXiv:0906.4978 [hep-th]].
193 Gehrels, N. et al. (Swift team), “The Swift Gamma-Ray Burst Mission”, in Fenimore, E. and Galassi, M., eds., Gamma-Ray Bursts: 30 Years of Discovery, Gamma-Ray Burst Symposium, Santa Fe, NM, USA, 8 – 12 September 2003, AIP Conference Proceedings, 727, pp. 637–641, (American Institute of Physics, Melville, NY, 2004). [External LinkDOI], [External LinkarXiv:astro-ph/0405233].
194 Geroch, R., “Multipole moments. I. Flat space”, J. Math. Phys., 11, 1955–1961 (1970). [External LinkDOI], [External LinkADS].
195 Geroch, R., “Multipole moments. II. Curved space”, J. Math. Phys., 11, 2580–2588 (1970). [External LinkDOI], [External LinkADS].
196 Glampedakis, K. and Babak, S., “Mapping spacetimes with LISA: Inspiral of a test-body in a ‘quasi-Kerr’ field”, Class. Quantum Grav., 23, 4167–4188 (2006). [External LinkDOI], [External LinkADS], [External LinkarXiv:gr-qc/0510057].
197 Goenner, H., “Some remarks on the genesis of scalar-tensor theories”, Gen. Relativ. Gravit., 44, 2077–2097 (2012). [External LinkDOI], [External LinkarXiv:1204.3455 [gr-qc]].
198 Goldberger, W.D. and Rothstein, I.Z., “Effective field theory of gravity for extended objects”, Phys. Rev. D, 73, 104029 (2006). [External LinkDOI], [External LinkarXiv:hep-th/0409156].
199 Goldberger, W.D. and Rothstein, I.Z., “Towers of gravitational theories”, Gen. Relativ. Gravit., 38, 1537–1546 (2006). [External LinkDOI], [External LinkADS], [External LinkarXiv:hep-th/0605238].
200 Goldhaber, A.S. and Nieto, M.M., “Mass of the graviton”, Phys. Rev. D, 9, 1119–1121 (1974). [External LinkDOI], [External LinkADS].
201 Gossan, S., Veitch, J. and Sathyaprakash, B.S., “Bayesian model selection for testing the no-hair theorem with black hole ringdowns”, Phys. Rev. D, 85, 124056 (2012). [External LinkDOI], [External LinkADS], [External LinkarXiv:1111.5819 [gr-qc]].
202 Gralla, S.E., “Motion of small bodies in classical field theory”, Phys. Rev. D, 81, 084060 (2010). [External LinkDOI], [External LinkarXiv:1002.5045 [gr-qc]].
203 Green, M.B., Schwarz, J.H. and Witten, E., Superstring Theory. Vol 1: Introduction, Cambridge Monographs on Mathematical Physics, (Cambridge University Press, Cambridge; New York, 1987).
204 Green, M.B., Schwarz, J.H. and Witten, E., Superstring Theory. Vol 2: Loop Amplitudes, Anomalies and Phenomenology, Cambridge Monographs on Mathematical Physics, (Cambridge University Press, Cambridge; New York, 1987).
205 Gregory, P.C., Bayesian Logical Data Analysis for the Physical Sciences: A Comparative Approach with ‘Mathematica’ Support, (Cambridge University Press, Cambridge; New York, 2005). [External LinkADS], [External LinkGoogle Books].
206 Groenewold, H.J., “On the principles of elementary quantum mechanics”, Physica, 12, 405–460 (1946). [External LinkDOI], [External LinkADS].
207 Grumiller, D. and Yunes, N., “How do black holes spin in Chern-Simons modified gravity?”, Phys. Rev. D, 77, 044015 (2008). [External LinkDOI], [External LinkADS], [External LinkarXiv:0711.1868 [gr-qc]].
208 Guenther, D.B., Krauss, L.M. and Demarque, P., “Testing the Constancy of the Gravitational Constant Using Helioseismology”, Astrophys. J., 498, 871–876 (1998). [External LinkDOI], [External LinkADS].
209 Guéron, E. and Letelier, P.S., “Chaos in pseudo-Newtonian black holes with halos”, Astron. Astrophys., 368, 716–720 (2001). [External LinkDOI], [External LinkADS], [External LinkarXiv:astro-ph/0101140].
210 Guéron, E. and Letelier, P.S., “Geodesic chaos around quadrupolar deformed centers of attraction”, Phys. Rev. E, 66, 046611 (2002). [External LinkDOI], [External LinkADS].
211 Gümrükçüoğlu, A.E., Kuroyanagi, S., Lin, C., Mukohyama, S. and Tanahashi, N., “Gravitational wave signal from massive gravity”, Class. Quantum Grav., 29, 235026 (2012). [External LinkDOI], [External LinkarXiv:1208.5975 [hep-th]].
212 Gürsel, Y. and Tinto, M., “Near optimal solution to the inverse problem for gravitational-wave bursts”, Phys. Rev. D, 40, 3884–3938 (1989). [External LinkDOI], [External LinkADS].
213 Hansen, R.O., “Multipole moments of stationary space-times”, J. Math. Phys., 15, 46–52 (1974). [External LinkDOI], [External LinkADS].
214 Harada, T., “Stability analysis of spherically symmetric star in scalar - tensor theories of gravity”, Prog. Theor. Phys., 98, 359–379 (1997). [External LinkDOI], [External LinkarXiv:gr-qc/9706014].
215 Harada, T., “Neutron stars in scalar tensor theories of gravity and catastrophe theory”, Phys. Rev. D, 57, 4802–4811 (1998). [External LinkDOI], [External LinkarXiv:gr-qc/9801049].
216 Harada, T., Chiba, T., Nakao, K.-I. and Nakamura, T., “Scalar gravitational wave from Oppenheimer-Snyder collapse in scalar-tensor theories of gravity”, Phys. Rev. D, 55, 2024–2037 (1997). [External LinkDOI], [External LinkarXiv:gr-qc/9611031].
217 Harry, G.M. (LIGO Scientific Collaboration), “Advanced LIGO: The next generation of gravitational wave detectors”, Class. Quantum Grav., 27, 084006 (2010). [External LinkDOI], [External LinkADS].
218 Hartle, J.B. and Thorne, K.S., “Slowly Rotating Relativistic Stars. II. Models for Neutron Stars and Supermassive Stars”, Astrophys. J., 153, 807–834 (1968). [External LinkDOI], [External LinkADS].
219 Hassan, S.F. and Rosen, R.A., “Bimetric Gravity from Ghost-free Massive Gravity”, J. High Energy Phys., 2012(02), 126 (2012). [External LinkDOI], [External LinkarXiv:1109.3515 [hep-th]].
220 Hassan, S.F. and Rosen, R.A., “Confirmation of the Secondary Constraint and Absence of Ghost in Massive Gravity and Bimetric Gravity”, J. High Energy Phys., 2012(04), 123 (2012). [External LinkDOI], [External LinkarXiv:1111.2070 [hep-th]].
221 Hastings, W.K., “Monte Carlo sampling methods using Markov chains and their applications”, Biometrika, 57, 97–109 (1970). [External LinkDOI].
222 Hawking, S.W., “Gravitational Radiation from Colliding Black Holes”, Phys. Rev. Lett., 26, 1344–1346 (1971). [External LinkDOI], [External LinkADS].
223 Hawking, S.W., “Black Holes in General Relativity”, Commun. Math. Phys., 25, 152–166 (1972). [External LinkDOI], [External LinkADS].
224 Hawking, S.W., “Black Holes in the Brans-Dicke Theory of Gravitation”, Commun. Math. Phys., 25, 167–171 (1972). [External LinkDOI], [External LinkADS].
225 Hawking, S.W. and Ellis, G.F.R., The Large Scale Structure of Space-Time, Cambridge Monographs on Mathematical Physics, (Cambridge University Press, Cambridge; New York, 1973). [External LinkADS], [External LinkGoogle Books].
226 Hawking, S.W. and Hartle, J.B., “Energy and angular momentum flow into a black hole”, Commun. Math. Phys., 27, 283–290 (1972). [External LinkDOI], [External LinkADS].
227 Hawking, S.W. and Israel, W., eds., Three Hundred Years of Gravitation, (Cambridge University Press, Cambridge; New York, 1987). [External LinkGoogle Books].
228 Hayama, K. and Nishizawa, A., “Model-independent test of gravity with a network of ground-based gravitational-wave detectors”, Phys. Rev. D, 87, 062003 (2013). [External LinkDOI], [External LinkADS], [External LinkarXiv:1208.4596 [gr-qc]].
229 Hayasaki, K., Yagi, K., Tanaka, T. and Mineshige, S., “Gravitational wave diagnosis of a circumbinary disk”, Phys. Rev. D, 87, 044051 (2013). [External LinkDOI], [External LinkarXiv:1201.2858 [astro-ph.CO]].
230 Healy, J., Bode, T., Haas, R., Pazos, E., Laguna, P., Shoemaker, D.M. and Yunes, N., “Late Inspiral and Merger of Binary Black Holes in Scalar-Tensor Theories of Gravity”, arXiv, e-print, (2011). [External LinkADS], [External LinkarXiv:1112.3928 [gr-qc]].
231 Hellings, R.W. and Downs, G.S., “Upper limits on the isotropic gravitational radiation background from pulsar timing analysis”, Astrophys. J. Lett., 265, L39–L42 (1983). [External LinkDOI], [External LinkADS].
232 Hinterbichler, K., “Theoretical Aspects of Massive Gravity”, Rev. Mod. Phys., 84, 671–710 (2012). [External LinkDOI], [External LinkarXiv:1105.3735 [hep-th]].
233 Hořava, P., “Membranes at quantum criticality”, J. High Energy Phys., 2009(03), 020 (2009). [External LinkDOI], [External LinkarXiv:0812.4287 [hep-th]].
234 Hořava, P., “Quantum gravity at a Lifshitz point”, Phys. Rev. D, 79, 084008 (2009). [External LinkDOI], [External LinkarXiv:0901.3775 [hep-th]].
235 Horbatsch, M.W. and Burgess, C.P., “Semi-Analytic Stellar Structure in Scalar-Tensor Gravity”, J. Cosmol. Astropart. Phys., 2011(08), 027 (2011). [External LinkDOI], [External LinkarXiv:1006.4411 [gr-qc]].
236 Horbatsch, M.W. and Burgess, C.P., “Cosmic black-hole hair growth and quasar OJ287”, J. Cosmol. Astropart. Phys., 2012(05), 010 (2012). [External LinkDOI], [External LinkADS], [External LinkarXiv:1111.4009 [gr-qc]].
237 Hoyle, C.D., Kapner, D.J., Heckel, B.R., Adelberger, E.G., Gundlach, J.H., Schmidt, U. and Swanson, H.E., “Submillimeter tests of the gravitational inverse-square law”, Phys. Rev. D, 70, 042004 (2004). [External LinkDOI], [External LinkarXiv:hep-ph/0405262].
238 Hughes, S.A., “Evolution of circular, nonequatorial orbits of Kerr black holes due to gravitational-wave emission”, Phys. Rev. D, 61, 084004 (2000). [External LinkDOI], [External LinkarXiv:gr-qc/9910091]. Errata: 10.1103/PhysRevD.63.049902, 10.1103/PhysRevD.65.069902, 10.1103/PhysRevD.67.089901, 10.1103/PhysRevD.78.109902.
239 Hughes, S.A., “Evolution of circular, nonequatorial orbits of Kerr black holes due to gravitational-wave emission. II. Inspiral trajectories and gravitational waveforms”, Phys. Rev. D, 64, 064004 (2001). [External LinkDOI], [External LinkarXiv:gr-qc/0104041].
240 Huwyler, C., Klein, A. and Jetzer, P., “Testing general relativity with LISA including spin precession and higher harmonics in the waveform”, Phys. Rev. D, 86, 084028 (2012). [External LinkDOI], [External LinkADS], [External LinkarXiv:1108.1826 [gr-qc]].
241 Isaacson, R.A., “Gravitational Radiation in the Limit of High Frequency. I. The Linear Approximation and Geometrical Optics”, Phys. Rev., 166, 1263–1271 (1968). [External LinkDOI], [External LinkADS].
242 Isaacson, R.A., “Gravitational Radiation in the Limit of High Frequency. II. Nonlinear Terms and the Effective Stress Tensor”, Phys. Rev., 166, 1272–1279 (1968). [External LinkDOI], [External LinkADS].
243 Israel, W., “Event Horizons in Static Vacuum Space-Times”, Phys. Rev., 164, 1776–1779 (1967). [External LinkDOI], [External LinkADS].
244 Israel, W., “Event Horizons in Static Electrovac Space-Times”, Commun. Math. Phys., 8, 245–260 (1968). [External LinkDOI], [External LinkADS].
245 Jackiw, R. and Pi, S.-Y., “Chern-Simons modification of general relativity”, Phys. Rev. D, 68, 104012 (2003). [External LinkDOI], [External LinkADS], [External LinkarXiv:gr-qc/0308071].
246 Jacobson, T., “Primordial black hole evolution in tensor scalar cosmology”, Phys. Rev. Lett., 83, 2699–2702 (1999). [External LinkDOI], [External LinkarXiv:astro-ph/9905303].
247 Jacobson, T., “Einstein-æther gravity: A status report”, in From Quantum to Emergent Gravity: Theory and Phenomenology, June 11 – 15 2007, Trieste, Italy, Proceedings of Science, PoS(QG-Ph)020, (SISSA, Trieste, 2008). [External LinkarXiv:0801.1547 [gr-qc]]. URL (accessed 15 April 2013):
External Linkhttp://pos.sissa.it/cgi-bin/reader/conf.cgi?confid=43.
248 Jaranowski, P. and Królak, A., “Gravitational-Wave Data Analysis. Formalism and Sample Applications: The Gaussian Case”, Living Rev. Relativity, 15, lrr-2012-4 (2012). [External LinkDOI], [External LinkADS]. URL (accessed 15 April 2013):
http://www.livingreviews.org/lrr-2012-4.
249 Jofré, P., Reisenegger, A. and Fernández, R., “Constraining a Possible Time Variation of the Gravitational Constant through ‘Gravitochemical Heating’ of Neutron Stars”, Phys. Rev. Lett., 97, 131102 (2006). [External LinkDOI], [External LinkarXiv:astro-ph/0606708].
250 Johannsen, T. and Psaltis, D., “Testing the No-Hair Theorem with Observations in the Electromagnetic Spectrum. I. Properties of a Quasi-Kerr Spacetime”, Astrophys. J., 716, 187–197 (2010). [External LinkDOI], [External LinkarXiv:1003.3415 [astro-ph.HE]].
251 Johannsen, T. and Psaltis, D., “Testing the No-Hair Theorem with Observations in the Electromagnetic Spectrum. II. Black Hole Images”, Astrophys. J., 718, 446–454 (2010). [External LinkDOI], [External LinkarXiv:1005.1931 [astro-ph.HE]].
252 Johannsen, T. and Psaltis, D., “Metric for rapidly spinning black holes suitable for strong-field tests of the no-hair theorem”, Phys. Rev. D, 83, 124015 (2011). [External LinkDOI], [External LinkarXiv:1105.3191 [gr-qc]].
253 Johannsen, T. and Psaltis, D., “Testing the No-Hair Theorem with Observations in the Electromagnetic Spectrum. III. Quasi-Periodic Variability”, Astrophys. J., 726, 11 (2011). [External LinkDOI], [External LinkarXiv:1010.1000 [astro-ph.HE]].
254 Johannsen, T. and Psaltis, D., “Testing the No-Hair Theorem with Observations in the Electromagnetic Spectrum. IV. Relativistically Broadened Iron Lines”, Astrophys. J., 773, 57 (2013). [External LinkDOI], [External LinkADS], [External LinkarXiv:1202.6069 [astro-ph.HE]].
255 Johannsen, T., Psaltis, D. and McClintock, J.E., “Constraints on the Size of Extra Dimensions from the Orbital Evolution of Black-Hole X-Ray Binaries”, Astrophys. J., 691, 997–1004 (2009). [External LinkDOI], [External LinkADS], [External LinkarXiv:0803.1835 [astro-ph]].
256 Kamaretsos, I., Hannam, M., Husa, S. and Sathyaprakash, B.S., “Black-hole hair loss: Learning about binary progenitors from ringdown signals”, Phys. Rev. D, 85, 024018 (2012). [External LinkDOI], [External LinkADS], [External LinkarXiv:1107.0854 [gr-qc]].
257 Kanti, P., Mavromatos, N.E., Rizos, J., Tamvakis, K. and Winstanley, E., “Dilatonic black holes in higher curvature string gravity”, Phys. Rev. D, 54, 5049–5058 (1996). [External LinkDOI], [External LinkarXiv:hep-th/9511071].
258 Kanti, P., Mavromatos, N.E., Rizos, J., Tamvakis, K. and Winstanley, E., “Dilatonic black holes in higher curvature string gravity: II. Linear stability”, Phys. Rev. D, 57, 6255–6264 (1998). [External LinkDOI], [External LinkarXiv:hep-th/9703192].
259 Kapner, D.J., Cook, T.S., Adelberger, E.G., Gundlach, J.H., Heckel, B.R., Hoyle, C.D. and Swanson, H.E., “Tests of the Gravitational Inverse-Square Law below the Dark-Energy Length Scale”, Phys. Rev. Lett., 98, 021101 (2007). [External LinkDOI], [External LinkarXiv:hep-ph/0611184].
260 Kaspi, V.M., Taylor, J.H. and Ryba, M.F., “High-precision timing of millisecond pulsars. III. Long-term monitoring of PSRs B1855+09 and B1937+21”, Astrophys. J., 428, 713 (1994). [External LinkDOI], [External LinkADS].
261 Kehagias, A. and Sfetsos, K., “Deviations from the 1∕r2 Newton law due to extra dimensions”, Phys. Lett. B, 472, 39–44 (2000). [External LinkDOI], [External LinkarXiv:hep-ph/9905417].
262 Keppel, D. and Ajith, P., “Constraining the mass of the graviton using coalescing black-hole binaries”, Phys. Rev. D, 82, 122001 (2010). [External LinkDOI], [External LinkADS], [External LinkarXiv:1004.0284 [gr-qc]].
263 Kesden, M., Gair, J.R. and Kamionkowski, M., “Gravitational-wave signature of an inspiral into a supermassive horizonless object”, Phys. Rev. D, 71, 044015 (2005). [External LinkDOI], [External LinkADS], [External LinkarXiv:astro-ph/0411478].
264 Kim, H., “New black hole solutions in Brans-Dicke theory of gravity”, Phys. Rev. D, 60, 024001 (1999). [External LinkDOI], [External LinkarXiv:gr-qc/9811012].
265 Klein, A., Cornish, N. and Yunes, N., “Gravitational Waveforms for Precessing, Quasi-circular Binaries via Multiple Scale Analysis and Uniform Asymptotics: The Near Spin Alignment Case”, arXiv, e-print, (2013). [External LinkarXiv:1305.1932 [gr-qc]].
266 Kocsis, B., Haiman, Z. and Menou, K., “Premerger Localization of Gravitational Wave Standard Sirens with LISA: Triggered Search for an Electromagnetic Counterpart”, Astrophys. J., 684, 870–887 (2008). [External LinkDOI], [External LinkADS], [External LinkarXiv:0712.1144 [astro-ph]].
267 Kocsis, B., Yunes, N. and Loeb, A., “Observable signatures of extreme mass-ratio inspiral black hole binaries embedded in thin accretion disks”, Phys. Rev. D, 84, 024032 (2011). [External LinkDOI], [External LinkADS], [External LinkarXiv:1104.2322 [astro-ph.GA]].
268 Kodama, H. and Yoshino, H., “Axiverse and Black Hole”, Int. J. Mod. Phys.: Conf. Ser., 7, 84–115 (2012). [External LinkDOI], [External LinkADS], [External LinkarXiv:1108.1365 [hep-th]].
269 Kogan, I.I., Mouslopoulos, S. and Papazoglou, A., “The m 0 limit for massive graviton in dS4 and AdS4: How to circumvent the van Dam–Veltman–Zakharov discontinuity”, Phys. Lett. B, 503, 173–180 (2001). [External LinkDOI], [External LinkarXiv:hep-th/0011138].
270 Kolmogorov, A.N., “O sohranenii uslovnoperiodicheskih dvizhenij pri malom izmenenii funkcii Gamil’tona”, Dokl. Akad. Nauk. SSSR, 98, 527–530 (1954). On conservation of conditionally periodic motions for a small change in Hamilton’s function.
271 Komatsu, E. et al. (WMAP Collaboration), “Five-year Wilkinson Microwave Anisotropy Probe observations: cosmological interpretation”, Astrophys. J. Suppl. Ser., 180, 330–376 (2009). [External LinkDOI], [External LinkADS], [External LinkarXiv:0803.0547 [astro-ph]].
272 Konno, K., Matsuyama, T. and Tanda, S., “Rotating Black Hole in Extended Chern-Simons Modified Gravity”, Prog. Theor. Phys., 122, 561–568 (2009). [External LinkDOI], [External LinkADS], [External LinkarXiv:0902.4767 [gr-qc]].
273 Kramer, M. and Wex, N., “The double pulsar system: A unique laboratory for gravity”, Class. Quantum Grav., 26, 073001 (2009). [External LinkDOI], [External LinkADS].
274 Kramer, M. et al., “Tests of General Relativity from Timing the Double Pulsar”, Science, 314, 97–102 (2006). [External LinkDOI], [External LinkADS], [External LinkarXiv:astro-ph/0609417].
275 Kusenko, A., “Solitons in the supersymmetric extensions of the standard model”, Phys. Lett. B, 405, 108–113 (1997). [External LinkDOI], [External LinkarXiv:hep-ph/9704273].
276 Kusenko, A., “Supersymmetric Q-balls: Theory and Cosmology”, in Nath, P., ed., Particles, Strings And Cosmology (PASCOS 98), Proceedings of the Sixth International Symposium, Boston, Massachusetts, 22 – 29 March 1998, pp. 540–543, (World Scientific, Singapore; Hackensack, NJ, 1999). [External LinkarXiv:hep-ph/9806529].
277 Laguna, P., Larson, S.L., Spergel, D. and Yunes, N., “Integrated Sachs–Wolfe Effect for Gravitational Radiation”, Astrophys. J. Lett., 715, L12–L15 (2009). [External LinkDOI], [External LinkarXiv:0905.1908 [gr-qc]].
278 Lanahan-Tremblay, N. and Faraoni, V., “The Cauchy problem of f(R) gravity”, Class. Quantum Grav., 24, 5667–5679 (2007). [External LinkDOI], [External LinkADS], [External LinkarXiv:0709.4414 [gr-qc]].
279 Lang, R.N. and Hughes, S.A., “Measuring coalescing massive binary black holes with gravitational waves: The impact of spin-induced precession”, Phys. Rev. D, 74, 122001 (2006). [External LinkDOI], [External LinkarXiv:gr-qc/0608062]. Errata: 10.1103/PhysRevD.75.089902, 10.1103/PhysRevD.77.109901.
280 Lang, R.N., Hughes, S.A. and Cornish, N.J., “Measuring parameters of massive black hole binaries with partially aligned spins”, Phys. Rev. D, 84, 022002 (2011). [External LinkDOI], [External LinkarXiv:1101.3591 [gr-qc]].
281 Larson, S.L. and Hiscock, W.A., “Using binary stars to bound the mass of the graviton”, Phys. Rev. D, 61, 104008 (2000). [External LinkDOI], [External LinkADS], [External LinkarXiv:gr-qc/9912102].
282 Lattimer, J.M. and Schutz, B.F., “Constraining the equation of state with moment of inertia measurements”, Astrophys. J., 629, 979–984 (2005). [External LinkDOI], [External LinkarXiv:astro-ph/0411470].
283 Lattimer, J.M. and Swesty, F.D., “A generalized equation of state for hot, dense matter”, Nucl. Phys. A, 535, 331–376 (1991). [External LinkDOI], [External LinkADS].
284 Lee, K., Jenet, F.A. and Price, R.H., “Pulsar Timing as a Probe of Non-Einsteinian Polarizations of Gravitational Waves”, Astrophys. J., 685, 1304–1319 (2008). [External LinkDOI], [External LinkADS].
285 Lee, K., Jenet, F.A., Price, R.H., Wex, N. and Kramer, M., “Detecting Massive Gravitons Using Pulsar Timing Arrays”, Astrophys. J., 722, 1589–1597 (2010). [External LinkDOI], [External LinkADS], [External LinkarXiv:1008.2561 [astro-ph.HE]].
286 Letelier, P.S. and Vieira, W.M., “Chaos and rotating black holes with halos”, Phys. Rev. D, 56, 8095–8098 (1997). [External LinkDOI], [External LinkarXiv:gr-qc/9712008].
287 Letelier, P.S. and Vieira, W.M., “Chaos in black holes surrounded by gravitational waves”, Class. Quantum Grav., 14, 1249–1257 (1997). [External LinkDOI], [External LinkADS], [External LinkarXiv:gr-qc/9706025].
288 Letelier, P.S. and Vieira, W.M., “Chaos and Taub-NUT related spacetimes”, Phys. Lett. A, 244, 324–328 (1998). [External LinkDOI], [External LinkarXiv:gr-qc/9712030].
289 Li, C. and Lovelace, G., “Generalization of Ryan’s theorem: Probing tidal coupling with gravitational waves from nearly circular, nearly equatorial, extreme-mass-ratio inspirals”, Phys. Rev. D, 77, 064022 (2008). [External LinkDOI], [External LinkADS], [External LinkarXiv:gr-qc/0702146].
290 Li, T.G.F. et al., “Towards a generic test of the strong field dynamics of general relativity using compact binary coalescence”, Phys. Rev. D, 85, 082003 (2012). [External LinkDOI], [External LinkADS], [External LinkarXiv:1110.0530 [gr-qc]].
291 Li, T.G.F. et al., “Towards a generic test of the strong field dynamics of general relativity using compact binary coalescence: Further investigations”, J. Phys.: Conf. Ser., 363, 012028 (2012). [External LinkDOI], [External LinkADS], [External LinkarXiv:1111.5274 [gr-qc]].
292 Lichtenberg, A.J. and Lieberman, M.A., Regular and Chaotic Dynamics, Applied Mathematical Sciences, 38, (Springer, Berlin, 1992), 2nd edition.
293 Lightman, A.P. and Lee, D.L., “New Two-Metric Theory of Gravity with Prior Geometry”, Phys. Rev. D, 8, 3293–3302 (1973). [External LinkDOI], [External LinkADS].
294 Littenberg, T.B. and Cornish, N.J., “Bayesian approach to the detection problem in gravitational wave astronomy”, Phys. Rev. D, 80, 063007 (2009). [External LinkDOI], [External LinkADS], [External LinkarXiv:0902.0368 [gr-qc]].
295 Lue, A., Wang, L. and Kamionkowski, M., “Cosmological Signature of New Parity-Violating Interactions”, Phys. Rev. Lett., 83, 1506–1509 (1999). [External LinkDOI], [External LinkarXiv:astro-ph/9812088].
296 Lukes-Gerakopoulos, G., “The non-integrability of the Zipoy-Voorhees metric”, Phys. Rev. D, 86, 044013 (2012). [External LinkDOI], [External LinkarXiv:1206.0660 [gr-qc]].
297 Lukes-Gerakopoulos, G., Apostolatos, T.A. and Contopoulos, G., “Observable signature of a background deviating from the Kerr metric”, Phys. Rev. D, 81, 124005 (2010). [External LinkDOI], [External LinkADS], [External LinkarXiv:1003.3120 [gr-qc]].
298 Lyne, A.G. et al., “A Double-Pulsar System: A Rare Laboratory for Relativistic Gravity and Plasma Physics”, Science, 303, 1153–1157 (2004). [External LinkDOI], [External LinkarXiv:astro-ph/0401086].
299 Maggiore, M. and Nicolis, A., “Detection strategies for scalar gravitational waves with interferometers and resonant spheres”, Phys. Rev. D, 62, 024004 (2000). [External LinkDOI], [External LinkADS], [External LinkarXiv:gr-qc/9907055].
300 Magueijo, J. and Smolin, L., “Lorentz Invariance with an Invariant Energy Scale”, Phys. Rev. Lett., 88, 190403 (2002). [External LinkDOI], [External LinkADS], [External LinkarXiv:hep-th/0112090].
301 Maldacena, J.M., “The large N limit of superconformal field theories and supergravity”, Adv. Theor. Math. Phys., 2, 231–252 (1998). [External LinkADS], [External LinkarXiv:hep-th/9711200].
302 Manko, V.S. and Novikov, I.D., “Generalizations of the Kerr and Kerr-Newman metrics possessing an arbitrary set of mass-multipole moments”, Class. Quantum Grav., 9, 2477–2487 (1992). [External LinkDOI], [External LinkADS].
303 Marsh, D.J.E., Macaulay, E., Trebitsch, M. and Ferreira, P.G., “Ultralight axions: Degeneracies with massive neutrinos and forecasts for future cosmological observations”, Phys. Rev. D, 85, 103514 (2012). [External LinkDOI], [External LinkADS], [External LinkarXiv:1110.0502 [astro-ph.CO]].
304 Maselli, A., Cardoso, V., Ferrari, V., Gualtieri, L. and Pani, P., “Equation-of-state-independent relations in neutron stars”, Phys. Rev. D, 88, 023007 (2013). [External LinkDOI], [External LinkADS], [External LinkarXiv:1304.2052 [gr-qc]].
305 Maselli, A., Gualtieri, L., Pannarale, F. and Ferrari, V., “On the validity of the adiabatic approximation in compact binary inspirals”, Phys. Rev. D, 86, 044032 (2012). [External LinkDOI], [External LinkarXiv:1205.7006 [gr-qc]].
306 Mazur, P.O., “Proof of uniqueness of the Kerr–Newman black hole solution”, J. Phys. A: Math. Gen., 15, 3173–3180 (1982). [External LinkDOI], [External LinkADS].
307 Mazur, P.O. and Mottola, E., “Gravitational Condensate Stars: An Alternative to Black Holes”, arXiv, e-print, (2001). [External LinkADS], [External LinkarXiv:gr-qc/0109035].
308 McWilliams, S.T., “Constraining the Braneworld with Gravitational Wave Observations”, Phys. Rev. Lett., 104, 141601 (2010). [External LinkDOI], [External LinkADS], [External LinkarXiv:0912.4744 [gr-qc]].
309 Medved, A.J.M., Martin, D. and Visser, M., “Dirty black holes: quasinormal modes”, Class. Quantum Grav., 21, 1393–1406 (2004). [External LinkDOI], [External LinkarXiv:gr-qc/0310009].
310 Medved, A.J.M., Martin, D. and Visser, M., “Dirty black holes: Quasinormal modes for ‘squeezed’ horizons”, Class. Quantum Grav., 21, 2393–2405 (2004). [External LinkDOI], [External LinkarXiv:gr-qc/0310097].
311 Mercuri, S. and Taveras, V., “Interaction of the Barbero-Immirzi field with matter and pseudoscalar perturbations”, Phys. Rev. D, 80, 104007 (2009). [External LinkDOI], [External LinkarXiv:0903.4407 [gr-qc]].
312 Merritt, D., Alexander, T., Mikkola, S. and Will, C.M., “Testing properties of the galactic center black hole using stellar orbits”, Phys. Rev. D, 81, 062002 (2010). [External LinkDOI], [External LinkarXiv:0911.4718 [astro-ph.GA]].
313 Merritt, D., Alexander, T., Mikkola, S. and Will, C.M., “Stellar dynamics of extreme-mass-ratio inspirals”, Phys. Rev. D, 84, 044024 (2011). [External LinkDOI], [External LinkADS], [External LinkarXiv:1102.3180 [astro-ph.CO]].
314 Metropolis, N., “Summation of imprecise numbers”, Comput. Math. Appl., 6, 297–299 (1980). [External LinkDOI].
315 Mirshekari, S. and Will, C.M., “Compact binary systems in scalar-tensor gravity: Equations of motion to 2.5 post-Newtonian order”, Phys. Rev. D, 87, 084070 (2013). [External LinkDOI], [External LinkADS], [External LinkarXiv:1301.4680 [gr-qc]].
316 Mirshekari, S., Yunes, N. and Will, C.M., “Constraining Generic Lorentz Violation and the Speed of the Graviton with Gravitational Waves”, Phys. Rev. D, 85, 024041 (2012). [External LinkDOI], [External LinkarXiv:1110.2720 [gr-qc]].
317 Mishra, C.K., Arun, K.G., Iyer, B.R. and Sathyaprakash, B.S., “Parametrized tests of post-Newtonian theory using Advanced LIGO and Einstein Telescope”, Phys. Rev. D, 82, 064010 (2010). [External LinkDOI], [External LinkADS], [External LinkarXiv:1005.0304 [gr-qc]].
318 Misner, C.W., Thorne, K.S. and Wheeler, J.A., Gravitation, (W.H. Freeman, San Francisco, 1973). [External LinkADS].
319 Molina, C., Pani, P., Cardoso, V. and Gualtieri, L., “Gravitational signature of Schwarzschild black holes in dynamical Chern-Simons gravity”, Phys. Rev. D, 81, 124021 (2010). [External LinkDOI], [External LinkADS], [External LinkarXiv:1004.4007 [gr-qc]].
320 Mora, T. and Will, C.M., “Post-Newtonian diagnostic of quasiequilibrium binary configurations of compact objects”, Phys. Rev. D, 69, 104021 (2004). [External LinkDOI], [External LinkarXiv:gr-qc/0312082 [gr-qc]].
321 Moser, J., “On Invariant Curves of Area-Preserving Mappings of an Annulus”, Nachr. Akad. Wiss. Goettingen II, Math.-Phys. Kl., 1962, 1–20 (1962).
322 Moyal, J.E. and Bartlett, M.S., “Quantum mechanics as a statistical theory”, Proc. Cambridge Philos. Soc., 45, 99–124 (1949). [External LinkDOI], [External LinkADS].
323 Nakao, K.-I., Harada, T., Shibata, M., Kawamura, S. and Nakamura, T., “Response of interferometric detectors to scalar gravitational waves”, Phys. Rev. D, 63, 082001 (2001). [External LinkDOI], [External LinkADS], [External LinkarXiv:gr-qc/0006079].
324 Nelson, W., “Static solutions for fourth order gravity”, Phys. Rev. D, 82, 104026 (2010). [External LinkDOI], [External LinkADS], [External LinkarXiv:1010.3986 [gr-qc]].
325 Nelson, W., Ochoa, J. and Sakellariadou, M., “Constraining the Noncommutative Spectral Action via Astrophysical Observations”, Phys. Rev. Lett., 105, 101602 (2010). [External LinkDOI], [External LinkarXiv:1005.4279 [hep-th]].
326 Nelson, W., Ochoa, J. and Sakellariadou, M., “Gravitational Waves in the Spectral Action of Noncommutative Geometry”, Phys. Rev. D, 82, 085021 (2010). [External LinkDOI], [External LinkarXiv:1005.4276 [hep-th]].
327 Newman, E.T. and Janis, A.I., “Note on the Kerr Spinning-Particle Metric”, J. Math. Phys., 6, 915–917 (1965). [External LinkDOI], [External LinkADS].
328 Ni, W.-T., “Solar-system tests of the inflation model with a Weyl term”, arXiv, e-print, (2012). [External LinkADS], [External LinkarXiv:1203.2465 [astro-ph.CO]].
329 Nishizawa, A., Taruya, A., Hayama, K., Kawamura, S. and Sakagami, M.-A., “Probing nontensorial polarizations of stochastic gravitational-wave backgrounds with ground-based laser interferometers”, Phys. Rev. D, 79, 082002 (2009). [External LinkDOI], [External LinkADS], [External LinkarXiv:0903.0528 [astro-ph.CO]].
330 Nishizawa, A., Taruya, A. and Kawamura, S., “Cosmological test of gravity with polarizations of stochastic gravitational waves around 0.1–1 Hz”, Phys. Rev. D, 81, 104043 (2010). [External LinkDOI], [External LinkADS], [External LinkarXiv:0911.0525 [gr-qc]].
331 Nordtvedt Jr, K.L., “Equivalence Principle for Massive Bodies: II. Theory”, Phys. Rev., 169, 1017–1025 (1968). [External LinkDOI], [External LinkADS].
332 Nordtvedt Jr, K.L. and Will, C.M., “Conservation Laws and Preferred Frames in Relativistic Gravity. II. Experimental Evidence to Rule Out Preferred-Frame Theories of Gravity”, Astrophys. J., 177, 775–792 (1972). [External LinkDOI], [External LinkADS].
333 Novak, J., “Spherical neutron star collapse toward a black hole in a tensor-scalar theory of gravity”, Phys. Rev. D, 57, 4789–4801 (1998). [External LinkDOI], [External LinkADS], [External LinkarXiv:gr-qc/9707041].
334 Novak, J. and Ibáñez, J.M., “Gravitational waves from the collapse and bounce of a stellar core in tensor scalar gravity”, Astrophys. J., 533, 392–405 (2000). [External LinkDOI], [External LinkADS], [External LinkarXiv:astro-ph/9911298].
335 O’Connor, E. and Ott, C.D., “A new open-source code for spherically symmetric stellar collapse to neutron stars and black holes”, Class. Quantum Grav., 27, 114103 (2010). [External LinkDOI], [External LinkarXiv:0912.2393 [astro-ph.HE]].
336 Ohashi, A., Tagoshi, H. and Sasaki, M., “Post-Newtonian Expansion of Gravitational Waves from a Compact Star Orbiting a Rotating Black Hole in Brans-Dicke Theory: Circular Orbit Case”, Prog. Theor. Phys., 96, 713–727 (1996). [External LinkDOI].
337 Ostrogradski, M.V., “Mémoire sur les équations différentielles relatives au problème des isopérimètres”, Mem. Acad. St. Petersbourg, VI Ser., 4, 385–517 (1850).
338 Palenzuela, C., Lehner, L. and Liebling, S.L., “Orbital dynamics of binary boson star systems”, Phys. Rev. D, 77, 044036 (2008). [External LinkDOI], [External LinkarXiv:0706.2435 [gr-qc]].
339 Palenzuela, C., Olabarrieta, I., Lehner, L. and Liebling, S.L., “Head-on collisions of boson stars”, Phys. Rev. D, 75, 064005 (2007). [External LinkDOI], [External LinkarXiv:gr-qc/0612067].
340 Pani, P., Berti, E., Cardoso, V., Chen, Y. and Norte, R., “Gravitational wave signatures of the absence of an event horizon: Nonradial oscillations of a thin-shell gravastar”, Phys. Rev. D, 80, 124047 (2009). [External LinkDOI], [External LinkADS], [External LinkarXiv:0909.0287 [gr-qc]].
341 Pani, P., Berti, E., Cardoso, V., Chen, Y. and Norte, R., “Gravitational wave signatures of the absence of an event horizon. II. Extreme mass ratio inspirals in the spacetime of a thin-shell gravastar”, Phys. Rev. D, 81, 084011 (2010). [External LinkDOI], [External LinkADS], [External LinkarXiv:1001.3031 [gr-qc]].
342 Pani, P., Berti, E., Cardoso, V. and Read, J., “Compact stars in alternative theories of gravity: Einstein-Dilaton-Gauss-Bonnet gravity”, Phys. Rev. D, 84, 104035 (2011). [External LinkDOI], [External LinkarXiv:1109.0928 [gr-qc]].
343 Pani, P. and Cardoso, V., “Are black holes in alternative theories serious astrophysical candidates? The case for Einstein-Dilaton-Gauss-Bonnet black holes”, Phys. Rev. D, 79, 084031 (2009). [External LinkDOI], [External LinkarXiv:0902.1569 [gr-qc]].
344 Pani, P., Cardoso, V. and Gualtieri, L., “Gravitational waves from extreme mass-ratio inspirals in dynamical Chern-Simons gravity”, Phys. Rev. D, 83, 104048 (2011). [External LinkDOI], [External LinkADS], [External LinkarXiv:1104.1183 [gr-qc]].
345 Pani, P., Macedo, C.F.B., Crispino, L.C.B. and Cardoso, V., “Slowly rotating black holes in alternative theories of gravity”, Phys. Rev. D, 84, 087501 (2011). [External LinkDOI], [External LinkADS], [External LinkarXiv:1109.3996 [gr-qc]].
346 Paulos, M.F. and Tolley, A.J., “Massive Gravity Theories and limits of Ghost-free Bigravity models”, J. High Energy Phys., 2012(09), 002 (2012). [External LinkDOI], [External LinkarXiv:1203.4268 [hep-th]].
347 Penrose, R., “Gravitational Collapse: The Role of General Relativity”, Riv. Nuovo Cimento, 1, 252–276 (1969). [External LinkADS].
348 Perivolaropoulos, L., “PPN Parameter gamma and Solar System Constraints of Massive Brans-Dicke Theories”, Phys. Rev. D, 81, 047501 (2010). [External LinkDOI], [External LinkarXiv:0911.3401 [gr-qc]].
349 Pilo, L., “Bigravity as a Tool for Massive Gravity”, in XXIst International Europhysics Conference on High Energy Physics, Grenoble, Rhône-Alpes France, 21 – 27 July 2011, Proceedings of Science, PoS(EPS-HEP2011)076, (SISSA, Trieste, 2011). URL (accessed 15 April 2013):
External Linkhttp://pos.sissa.it/archive/conferences/134/076/EPS-HEP2011_076.pdf.
350 Pitjeva, E.V., “Relativistic Effects and Solar Oblateness from Radar Observations of Planets and Spacecraft”, Astron. Lett., 31, 340–349 (2005). [External LinkDOI], [External LinkADS].
351 Poisson, E., “Gravitational radiation from a particle in circular orbit around a black hole. I. Analytical results for the nonrotating case”, Phys. Rev. D, 47, 1497–1510 (1993). [External LinkDOI], [External LinkADS].
352 Poisson, E., A Relativist’s Toolkit: The Mathematics of Black-Hole Mechanics, (Cambrdige University Press, Cambridge; New York, 2004). [External LinkADS], [External LinkGoogle Books].
353 Poisson, E. and Will, C.M., “Gravitational waves from inspiraling compact binaries: Parameter estimation using second post-Newtonian wave forms”, Phys. Rev. D, 52, 848–855 (1995). [External LinkDOI], [External LinkarXiv:gr-qc/9502040].
354 Polchinski, J., String Theory. Vol. 1: An Introduction to the Bosonic String, Cambridge Monographs on Mathematical Physics, (Cambridge University Press, Cambridge; New York, 1998). [External LinkGoogle Books].
355 Polchinski, J., String Theory. Vol. 2: Superstring Theory and Beyond, Cambridge Monographs on Mathematical Physics, (Cambridge University Press, Cambridge; New York, 1998). [External LinkADS], [External LinkGoogle Books].
356 Price, R.H., “Nonspherical perturbations of relativistic gravitational collapse. I. Scalar and gravitational perturbations”, Phys. Rev. D, 5, 2419–2438 (1972). [External LinkDOI], [External LinkADS].
357 Price, R.H., “Nonspherical perturbations of relativistic gravitational collapse. II. Integer-spin, zero-rest-mass fields”, Phys. Rev. D, 5, 2439–2454 (1972). [External LinkDOI], [External LinkADS].
358 Psaltis, D., “Constraining Brans-Dicke Gravity with Accreting Millisecond Pulsars in Ultracompact Binaries”, Astrophys. J., 688, 1282–1287 (2008). [External LinkDOI], [External LinkADS], [External LinkarXiv:astro-ph/0501234].
359 Psaltis, D., “Probes and Tests of Strong-Field Gravity with Observations in the Electromagnetic Spectrum”, Living Rev. Relativity, 11, lrr-2008-9 (2008). [External LinkDOI], [External LinkADS], [External LinkarXiv:0806.1531]. URL (accessed 15 April 2013):
http://www.livingreviews.org/lrr-2008-9.
360 Psaltis, D., Perrodin, D., Dienes, K.R. and Mocioiu, I., “Kerr Black Holes are Not Unique to General Relativity”, Phys. Rev. Lett., 100, 091101 (2008). [External LinkDOI], [External LinkADS], [External LinkarXiv:0710.4564 [astro-ph]]. Erratum: 10.1103/PhysRevLett.100.119902.
361 Punturo, M. et al., “The Einstein Telescope: a third-generation gravitational wave observatory”, Class. Quantum Grav., 27, 194002 (2010). [External LinkDOI], [External LinkADS].
362 Reisenegger, A., Jofré, P. and Fernández, R., “Constraining a possible time-variation of the gravitational constant through ‘gravitochemical heating’ of neutron stars”, Mem. Soc. Astron. Ital., 80, 829–832 (2009). [External LinkADS], [External LinkarXiv:0911.0190 [astro-ph.HE]].
363 Robinson, D.C., “Uniqueness of the Kerr Black Hole”, Phys. Rev. Lett., 34, 905–906 (1975). [External LinkDOI], [External LinkADS].
364 Rodriguez, C.L., Mandel, I. and Gair, J.R., “Verifying the no-hair property of massive compact objects with intermediate-mass-ratio inspirals in advanced gravitational-wave detectors”, Phys. Rev. D, 85, 062002 (2012). [External LinkDOI], [External LinkarXiv:1112.1404 [astro-ph.HE]].
365 Rosen, N., “A theory of gravitation”, Ann. Phys. (N.Y.), 84, 455–473 (1974). [External LinkDOI], [External LinkADS].
366 Rovelli, C., Quantum Gravity, Cambridge Monographs on Mathematical Physics, (Cambridge University Press, Cambridge; New York, 2004). [External LinkGoogle Books].
367 Rover, C., Meyer, R. and Christensen, N., “Bayesian inference on compact binary inspiral gravitational radiation signals in interferometric data”, Class. Quantum Grav., 23, 4895–4906 (2006). [External LinkDOI], [External LinkarXiv:gr-qc/0602067].
368 Ruffini, R. and Sasaki, M., “On a semi relativistic treatment of the gravitational radiation from a mass thrusted into a black hole”, Prog. Theor. Phys., 66, 1627–1638 (1981). [External LinkDOI].
369 Ruiz, M., Degollado, J.C., Alcubierre, M., Núñez, D. and Salgado, M., “Induced scalarization in boson stars and scalar gravitational radiation”, Phys. Rev. D, 86, 104044 (2012). [External LinkDOI], [External LinkarXiv:1207.6142 [gr-qc]].
370 Ryan, F.D., “Gravitational waves from the inspiral of a compact object into a massive, axisymmetric body with arbitrary multipole moments”, Phys. Rev. D, 52, 5707–5718 (1995). [External LinkDOI], [External LinkADS].
371 Ryan, F.D., “Accuracy of estimating the multipole moments of a massive body from the gravitational waves of a binary inspiral”, Phys. Rev. D, 56, 1845–1855 (1997). [External LinkDOI], [External LinkADS].
372 Ryan, F.D., “Spinning boson stars with large self-interaction”, Phys. Rev. D, 55, 6081–6091 (1997). [External LinkDOI], [External LinkADS].
373 Sadeghian, L. and Will, C.M., “Testing the black hole no-hair theorem at the galactic center: Perturbing effects of stars in the surrounding cluster”, Class. Quantum Grav., 28, 225029 (2011). [External LinkDOI], [External LinkarXiv:1106.5056 [gr-qc]].
374 Saijo, M., Shinkai, H.-A. and Maeda, K.-I., “Gravitational waves in Brans-Dicke theory: Analysis by test particles around a Kerr black hole”, Phys. Rev. D, 56, 785–797 (1997). [External LinkDOI], [External LinkarXiv:gr-qc/9701001].
375 Salgado, M., Martínez del Río, D., Alcubierre, M. and Núñez, D., “Hyperbolicity of scalar-tensor theories of gravity”, Phys. Rev. D, 77, 104010 (2008). [External LinkDOI], [External LinkarXiv:0801.2372 [gr-qc]].
376 Sampson, L., Cornish, N.J. and Yunes, N., “Gravitational wave tests of strong field general relativity with binary inspirals: Realistic injections and optimal model selection”, Phys. Rev. D, 87, 102001 (2013). [External LinkDOI], [External LinkADS], [External LinkarXiv:1303.1185 [gr-qc]].
377 Sathyaprakash, B.S. et al., “Scientific objectives of Einstein Telescope”, Class. Quantum Grav., 29, 124013 (2012). [External LinkDOI], [External LinkarXiv:1206.0331 [gr-qc]].
378 Sazhin, M.V., “Opportunities for detecting ultralong gravitational waves”, Sov. Astron., 22, 36–38 (1978). [External LinkADS].
379 Scharre, P.D. and Will, C.M., “Testing scalar tensor gravity using space gravitational wave interferometers”, Phys. Rev. D, 65, 042002 (2002). [External LinkDOI], [External LinkADS], [External LinkarXiv:gr-qc/0109044].
380 Scheel, M.A., Shapiro, S.L. and Teukolsky, S.A., “Collapse to black holes in Brans-Dicke theory: I. Horizon boundary conditions for dynamical spacetimes”, Phys. Rev. D, 51, 4208–4235 (1995). [External LinkDOI], [External LinkADS], [External LinkarXiv:gr-qc/9411025].
381 Sefiedgar, A.S., Nozari, K. and Sepangi, H.R., “Modified dispersion relations in extra dimensions”, Phys. Lett. B, 696, 119–123 (2011). [External LinkDOI], [External LinkADS], [External LinkarXiv:1012.1406 [gr-qc]].
382 Shen, H., Toki, H., Oyamatsu, K. and Sumiyoshi, K., “Relativistic equation of state of nuclear matter for supernova and neutron star”, Nucl. Phys. A, 637, 435–450 (1998). [External LinkDOI], [External LinkADS], [External LinkarXiv:nucl-th/9805035].
383 Shen, H., Toki, H., Oyamatsu, K. and Sumiyoshi, K., “Relativistic Equation of State of Nuclear Matter for Supernova Explosion”, Prog. Theor. Phys., 100, 1013–1031 (1998). [External LinkDOI], [External LinkADS], [External LinkarXiv:nucl-th/9806095].
384 Shibata, M., Nakao, K. and Nakamura, T., “Scalar type gravitational wave emission from gravitational collapse in Brans-Dicke theory: Detectability by a laser interferometer”, Phys. Rev. D, 50, 7304–7317 (1994). [External LinkDOI], [External LinkADS].
385 Shibata, M., Taniguchi, K. and Uryū, K., “Merger of binary neutron stars with realistic equations of state in full general relativity”, Phys. Rev. D, 71, 084021 (2005). [External LinkDOI], [External LinkADS], [External LinkarXiv:gr-qc/0503119].
386 Shiiki, N. and Sawado, N., “Black holes with skyrme hair”, arXiv, e-print, (2005). [External LinkADS], [External LinkarXiv:gr-qc/0501025].
387 Sivia, D.S. and Skilling, J., Data Analysis: A Bayesian Tutorial, (Oxford University Press, Oxford; New York, 2006), 2nd edition. [External LinkGoogle Books].
388 Smith, T.L., Erickcek, A.L., Caldwell, R.R. and Kamionkowski, M., “The Effects of Chern-Simons gravity on bodies orbiting the Earth”, Phys. Rev. D, 77, 024015 (2008). [External LinkDOI], [External LinkarXiv:0708.0001 [astro-ph]].
389 Snyder, H.S., “Quantized Space-Time”, Phys. Rev., 71, 38–41 (1947). [External LinkDOI], [External LinkADS].
390 Sopuerta, C.F. and Yunes, N., “Extreme- and intermediate-mass ratio inspirals in dynamical Chern-Simons modified gravity”, Phys. Rev. D, 80, 064006 (2009). [External LinkDOI], [External LinkADS], [External LinkarXiv:0904.4501 [gr-qc]].
391 Sota, Y., Suzuki, S. and Maeda, K.-I., “Chaos in static axisymmetric spacetimes: I. Vacuum case”, Class. Quantum Grav., 13, 1241–1260 (1996). [External LinkDOI], [External LinkADS], [External LinkarXiv:gr-qc/9505036].
392 Sota, Y., Suzuki, S. and Maeda, K.-I., “Chaos in Static Axisymmetric Spacetimes: II. non-vacuum case”, arXiv, e-print, (1996). [External LinkADS], [External LinkarXiv:gr-qc/9610065].
393 Sotani, H., “Slowly Rotating Relativistic Stars in Scalar-Tensor Gravity”, Phys. Rev. D, 86, 124036 (2012). [External LinkDOI], [External LinkarXiv:1211.6986 [astro-ph.HE]].
394 Sotani, H. and Kokkotas, K.D., “Probing strong-field scalar-tensor gravity with gravitational wave asteroseismology”, Phys. Rev. D, 70, 084026 (2004). [External LinkDOI], [External LinkarXiv:gr-qc/0409066].
395 Sotani, H. and Kokkotas, K.D., “Stellar oscillations in scalar-tensor theory of gravity”, Phys. Rev. D, 71, 124038 (2005). [External LinkDOI], [External LinkarXiv:gr-qc/0506060].
396 Sotiriou, T.P., “f(R) gravity and scalar-tensor theory”, Class. Quantum Grav., 23, 5117–5128 (2006). [External LinkDOI], [External LinkarXiv:gr-qc/0604028].
397 Sotiriou, T.P. and Apostolatos, T.A., “Tracing the geometry around a massive, axisymmetric body to measure, through gravitational waves, its mass moments and electromagnetic moments”, Phys. Rev. D, 71, 044005 (2005). [External LinkDOI], [External LinkarXiv:gr-qc/0410102].
398 Sotiriou, T.P. and Faraoni, V., “Black Holes in Scalar-Tensor Gravity”, Phys. Rev. Lett., 108, 081103 (2012). [External LinkDOI], [External LinkADS], [External LinkarXiv:1109.6324 [gr-qc]].
399 Stavridis, A. and Will, C.M., “Effect of spin precession on bounding the mass of the graviton using gravitational waves from massive black hole binaries”, J. Phys.: Conf. Ser., 228, 012049 (2010). [External LinkDOI], [External LinkADS].
400 Stein, L.C. and Yunes, N., “Effective gravitational wave stress-energy tensor in alternative theories of gravity”, Phys. Rev. D, 83, 064038 (2011). [External LinkDOI], [External LinkADS], [External LinkarXiv:1012.3144 [gr-qc]].
401 Stephani, H., Kramer, D., MacCallum, M.A.H., Hoenselaers, C. and Herlt, E., Exact Solutions of Einstein’s Field Equations, Cambridge Monographs on Mathematical Physics, (Cambridge University Press, Cambridge; New York, 2003), 2nd edition. [External LinkADS], [External LinkGoogle Books].
402 Swendsen, R.H. and Wang, J.-S., “Replica Monte Carlo simulation of spin glasses”, Phys. Rev. Lett., 57, 2607–2609 (1986). [External LinkDOI], [External LinkADS].
403 Szabo, R.J., “Quantum gravity, field theory and signatures of noncommutative spacetime”, Gen. Relativ. Gravit., 42, 1–29 (2010). [External LinkDOI], [External LinkADS], [External LinkarXiv:0906.2913 [hep-th]].
404 Talmadge, C., Berthias, J.-P., Hellings, R.W. and Standish, E.M., “Model-independent constraints on possible modifications of Newtonian gravity”, Phys. Rev. Lett., 61, 1159–1162 (1988). [External LinkDOI], [External LinkADS].
405 Tanaka, T., “Classical Black Hole Evaporation in Randall-Sundrum Infinite Brane World”, Prog. Theor. Phys. Suppl., 148, 307–316 (2003). [External LinkDOI], [External LinkADS], [External LinkarXiv:gr-qc/0203082].
406 Taveras, V. and Yunes, N., “Barbero-Immirzi parameter as a scalar field: K-inflation from loop quantum gravity?”, Phys. Rev. D, 78, 064070 (2008). [External LinkDOI], [External LinkarXiv:0807.2652 [gr-qc]].
407 Thorne, K.S., “Multipole Expansions of Gravitational Radiation”, Rev. Mod. Phys., 52, 299–339 (1980). [External LinkDOI], [External LinkADS].
408 Thorne, K.S. and Dykla, J.J., “Black Holes in the Dicke-Brans-Jordan Theory of Gravity”, Astrophys. J. Lett., 166, L35–L38 (1971). [External LinkDOI], [External LinkADS].
409 Torii, T. and Maeda, K.-I., “Stability of a dilatonic black hole with a Gauss-Bonnet term”, Phys. Rev. D, 58, 084004 (1998). [External LinkDOI], [External LinkADS].
410 Tsuchida, T., Kawamura, G. and Watanabe, K., “A Maximum mass-to-size ratio in scalar tensor theories of gravity”, Prog. Theor. Phys., 100, 291–313 (1998). [External LinkDOI], [External LinkarXiv:gr-qc/9802049].
411 Uzan, J.-P., “The fundamental constants and their variation: observational and theoretical status”, Rev. Mod. Phys., 75, 403–455 (2003). [External LinkDOI], [External LinkADS], [External LinkarXiv:hep-ph/0205340].
412 Vacaru, S.I., “Modified Dispersion Relations in Hořava–Lifshitz Gravity and Finsler Brane Models”, Gen. Relativ. Gravit., 44, 1015–1042 (2012). [External LinkDOI], [External LinkarXiv:1010.5457 [math-ph]].
413 Vainshtein, A.I., “To the problem of nonvanishing gravitation mass”, Phys. Lett. B, 39, 393–394 (1972). [External LinkDOI], [External LinkADS].
414 Vallisneri, M., “Use and abuse of the Fisher information matrix in the assessment of gravitational-wave parameter-estimation prospects”, Phys. Rev. D, 77, 042001 (2008). [External LinkDOI], [External LinkADS], [External LinkarXiv:gr-qc/0703086].
415 Vallisneri, M., “Beyond the Fisher-Matrix Formalism: Exact Sampling Distributions of the Maximum-Likelihood Estimator in Gravitational-Wave Parameter Estimation”, Phys. Rev. Lett., 107, 191104 (2011). [External LinkDOI], [External LinkarXiv:1108.1158 [gr-qc]].
416 Vallisneri, M., “Testing general relativity with gravitational waves: A reality check”, Phys. Rev. D, 86, 082001 (2012). [External LinkDOI], [External LinkADS], [External LinkarXiv:1207.4759 [gr-qc]].
417 Vallisneri, M. and Yunes, N., “Stealth bias in gravitational-wave parameter estimation”, Phys. Rev. D, 87, 102002 (2013). [External LinkDOI], [External LinkADS], [External LinkarXiv:1301.2627 [gr-qc]].
418 van Dam, H. and Veltman, M.J.G., “Massive and mass-less Yang-Mills and gravitational fields”, Nucl. Phys. B, 22, 397–411 (1970). [External LinkDOI], [External LinkADS].
419 van der Sluys, M., Raymond, V., Mandel, I., Röver, C., Christensen, N., Kalogera, V., Meyer, R. and Vecchio, A., “Parameter estimation of spinning binary inspirals using Markov chain Monte Carlo”, Class. Quantum Grav., 25, 184011 (2008). [External LinkDOI], [External LinkADS], [External LinkarXiv:0805.1689 [gr-qc]].
420 Veitch, J. and Vecchio, A., “Assigning confidence to inspiral gravitational wave candidates with Bayesian model selection”, Class. Quantum Grav., 25, 184010 (2008). [External LinkDOI], [External LinkADS], [External LinkarXiv:0807.4483 [gr-qc]].
421 Vigeland, S.J., “Multipole moments of bumpy black holes”, Phys. Rev. D, 82, 104041 (2010). [External LinkDOI], [External LinkarXiv:1008.1278 [gr-qc]].
422 Vigeland, S.J. and Hughes, S.A., “Spacetime and orbits of bumpy black holes”, Phys. Rev. D, 81, 024030 (2010). [External LinkDOI], [External LinkarXiv:0911.1756 [gr-qc]].
423 Vigeland, S.J., Yunes, N. and Stein, L., “Bumpy black holes in alternate theories of gravity”, Phys. Rev. D, 83, 104027 (2011). [External LinkDOI], [External LinkADS], [External LinkarXiv:1102.3706 [gr-qc]].
424 Visser, M., “Mass for the graviton”, Gen. Relativ. Gravit., 30, 1717–1728 (1998). [External LinkDOI], [External LinkarXiv:gr-qc/9705051].
425 Wald, R.M., General Relativity, (University of Chicago Press, Chicago, 1984). [External LinkADS], [External LinkGoogle Books].
426 Wald, R., “It is Not Easy to Fool Mother Nature With a Modified Theory of Gravity”, Workshop on Tests of Gravity and Gravitational Physics, Cleveland, Ohio, May 19 – 21, 2009, conference paper, (2009).
427 Weinberg, S., “The cosmological constant problem”, Rev. Mod. Phys., 61, 1–23 (1989). [External LinkDOI], [External LinkADS].
428 Weinberg, S., The Quantum Theory of Fields. Vol. 2: Modern Applications, (Cambridge University Press, Cambridge; New York, 1996). [External LinkGoogle Books].
429 Weinberg, S., “Effective Field Theory for Inflation”, Phys. Rev. D, 77, 123541 (2008). [External LinkDOI], [External LinkADS], [External LinkarXiv:0804.4291 [hep-th]].
430 Wetterich, C., “Cosmologies with variable Newton’s ‘constant”’, Nucl. Phys. B, 302, 645–667 (1988). [External LinkDOI], [External LinkADS].
431 Wex, N. and Kopeikin, S., “Frame Dragging and Other Precessional Effects in Black Hole Pulsar Binaries”, Astrophys. J., 514, 388–401 (1999). [External LinkDOI], [External LinkarXiv:astro-ph/9811052 [astro-ph]].
432 Will, C.M., “Theoretical Frameworks for Testing Relativistic Gravity. II. Parametrized Post-Newtonian Hydrodynamics, and the Nordtvedt Effect”, Astrophys. J., 163, 611–628 (1971). [External LinkDOI], [External LinkADS].
433 Will, C.M., “Relativistic Gravity tn the Solar System. III. Experimental Disproof of a Class of Linear Theories of Gravitation”, Astrophys. J., 185, 31–42 (1973). [External LinkDOI], [External LinkADS].
434 Will, C.M., “Gravitational radiation from binary systems in alternative metric theories of gravity: Dipole radiation and the binary pulsar”, Astrophys. J., 214, 826–839 (1977). [External LinkDOI], [External LinkADS].
435 Will, C.M., Theory and Experiment in Gravitational Physics, (Cambridge University Press, Cambridge; New York, 1993), 2nd edition. [External LinkGoogle Books].
436 Will, C.M., “Testing scalar-tensor gravity with gravitational wave observations of inspiraling compact binaries”, Phys. Rev. D, 50, 6058–6067 (1994). [External LinkDOI], [External LinkarXiv:gr-qc/9406022].
437 Will, C.M., “Bounding the mass of the graviton using gravitational-wave observations of inspiralling compact binaries”, Phys. Rev. D, 57, 2061–2068 (1998). [External LinkDOI], [External LinkADS], [External LinkarXiv:gr-qc/9709011].
438 Will, C.M., “The Confrontation between General Relativity and Experiment”, Living Rev. Relativity, 9, lrr-2006-3 (2006). [External LinkDOI], [External LinkADS], [External LinkarXiv:gr-qc/0510072]. URL (accessed 15 April 2013):
http://www.livingreviews.org/lrr-2006-3.
439 Will, C.M. and Nordtvedt Jr, K.L., “Conservation Laws and Preferred Frames in Relativistic Gravity. I. Preferred-Frame Theories and an Extended PPN Formalism”, Astrophys. J., 177, 757–774 (1972). [External LinkDOI], [External LinkADS].
440 Will, C.M. and Yunes, N., “Testing alternative theories of gravity using LISA”, Class. Quantum Grav., 21, 4367–4381 (2004). [External LinkDOI], [External LinkADS], [External LinkarXiv:gr-qc/0403100].
441 Will, C.M. and Zaglauer, H.W., “Gravitational radiation, close binary systems, and the Brans–Dicke theory of gravity”, Astrophys. J., 346, 366–377 (1989). [External LinkDOI], [External LinkADS].
442 Williams, J.G., Turyshev, S.G. and Boggs, D.H., “Progress in Lunar Laser Ranging Tests of Relativistic Gravity”, Phys. Rev. Lett., 93, 261101 (2004). [External LinkDOI], [External LinkADS], [External LinkarXiv:gr-qc/0411113].
443 Woodard, R.P., “Avoiding Dark Energy with 1/R Modifications of Gravity”, in Papantonopoulos, L., ed., The Invisible Universe: Dark Matter and Dark Energy, Lecture Notes in Physics, 720,  14, pp. 403–433, (Springer, Berlin; New York, 2007). [External LinkDOI], [External LinkADS], [External LinkarXiv:astro-ph/0601672].
444 Yagi, K., “Gravitational wave observations of galactic intermediate-mass black hole binaries with DECIGO path finder”, Class. Quantum Grav., 29, 075005 (2012). [External LinkDOI], [External LinkADS], [External LinkarXiv:1202.3512 [astro-ph.CO]].
445 Yagi, K., “New constraint on scalar Gauss-Bonnet gravity and a possible explanation for the excess of the orbital decay rate in a low-mass x-ray binary”, Phys. Rev. D, 86, 081504 (2012). [External LinkDOI], [External LinkADS], [External LinkarXiv:1204.4524 [gr-qc]].
446 Yagi, K., “Scientific Potential of DECIGO Pathfinder and Testing GR with Space-Borne Gravitational Wave Interferometers”, Int. J. Mod. Phys. D, 22, 1341013 (2013). [External LinkDOI], [External LinkADS], [External LinkarXiv:1302.2388 [gr-qc]].
447 Yagi, K., Stein, L.C., Yunes, N. and Tanaka, T., “Post-Newtonian, quasicircular binary inspirals in quadratic modified gravity”, Phys. Rev. D, 85, 064022 (2012). [External LinkDOI], [External LinkADS], [External LinkarXiv:1110.5950 [gr-qc]].
448 Yagi, K., Stein, L.C., Yunes, N. and Tanaka, T., “Isolated and Binary Neutron Stars in Dynamical Chern-Simons Gravity”, Phys. Rev. D, 87, 084058 (2013). [External LinkDOI], [External LinkADS], [External LinkarXiv:1302.1918 [gr-qc]].
449 Yagi, K., Tanahashi, N. and Tanaka, T., “Probing the size of extra dimension with gravitational wave astronomy”, Phys. Rev. D, 83, 084036 (2011). [External LinkDOI], [External LinkADS], [External LinkarXiv:1101.4997 [gr-qc]].
450 Yagi, K. and Tanaka, T., “Constraining alternative theories of gravity by gravitational waves from precessing eccentric compact binaries with LISA”, Phys. Rev. D, 81, 064008 (2010). [External LinkDOI], [External LinkADS], [External LinkarXiv:0906.4269 [gr-qc]]. Erratum: 10.1103/PhysRevD.81.109902.
451 Yagi, K. and Tanaka, T., “DECIGO/BBO as a Probe to Constrain Alternative Theories of Gravity”, Prog. Theor. Phys., 123, 1069–1078 (2010). [External LinkDOI], [External LinkADS], [External LinkarXiv:0908.3283 [gr-qc]].
452 Yagi, K. and Yunes, N., “I-Love-Q relations in neutron stars and their applications to astrophysics, gravitational waves, and fundamental physics”, Phys. Rev. D, 88, 023009 (2013). [External LinkDOI], [External LinkADS], [External LinkarXiv:1303.1528 [gr-qc]].
453 Yagi, K. and Yunes, N., “I-Love-Q: Unexpected Universal Relations for Neutron Stars and Quark Stars”, Science, 341, 365–368 (2013). [External LinkDOI], [External LinkADS], [External LinkarXiv:1302.4499 [gr-qc]].
454 Yagi, K., Yunes, N. and Tanaka, T., “Gravitational Waves from Quasicircular Black-Hole Binaries in Dynamical Chern-Simons Gravity”, Phys. Rev. Lett., 109, 251105 (2012). [External LinkDOI], [External LinkADS], [External LinkarXiv:1208.5102 [gr-qc]].
455 Yagi, K., Yunes, N. and Tanaka, T., “Slowly Rotating Black Holes in Dynamical Chern-Simons Gravity: Deformation Quadratic in the Spin”, Phys. Rev. D, 86, 044037 (2012). [External LinkDOI], [External LinkADS], [External LinkarXiv:1206.6130 [gr-qc]].
456 Yunes, N., “Gravitational Wave Modelling of Extreme Mass Ratio Inspirals and the Effective-One-Body Approach”, GW Notes, 2, 3–47 (2009). [External LinkADS]. URL (accessed 15 April 2013):
External Linkhttp://brownbag.lisascience.org/lisa-gw-notes/.
457 Yunes, N., Arun, K.G., Berti, E. and Will, C.M., “Post-Circular Expansion of Eccentric Binary Inspirals: Fourier-Domain Waveforms in the Stationary Phase Approximation”, Phys. Rev. D, 80, 084001 (2009). [External LinkDOI], [External LinkarXiv:0906.0313 [gr-qc]].
458 Yunes, N., Buonanno, A., Hughes, S.A., Miller, M.C. and Pan, Y., “Modeling Extreme Mass Ratio Inspirals within the Effective-One-Body Approach”, Phys. Rev. Lett., 104, 091102 (2010). [External LinkDOI], [External LinkarXiv:0909.4263 [gr-qc]].
459 Yunes, N., Buonanno, A., Hughes, S.A., Pan, Y., Barausse, E., Miller, M.C. and Throwe, W., “Extreme mass-ratio inspirals in the effective-one-body approach: Quasicircular, equatorial orbits around a spinning black hole”, Phys. Rev. D, 83, 044044 (2011). [External LinkDOI], [External LinkarXiv:1009.6013 [gr-qc]].
460 Yunes, N. and Finn, L.S., “Constraining effective quantum gravity with LISA”, J. Phys.: Conf. Ser., 154, 012041 (2009). [External LinkDOI], [External LinkADS], [External LinkarXiv:0811.0181 [gr-qc]].
461 Yunes, N. and Hughes, S.A., “Binary pulsar constraints on the parameterized post-Einsteinian framework”, Phys. Rev. D, 82, 082002 (2010). [External LinkDOI], [External LinkADS], [External LinkarXiv:1007.1995 [gr-qc]].
462 Yunes, N., Kocsis, B., Loeb, A. and Haiman, Z., “Imprint of Accretion Disk-Induced Migration on Gravitational Waves from Extreme Mass Ratio Inspirals”, Phys. Rev. Lett., 107, 171103 (2011). [External LinkDOI], [External LinkADS], [External LinkarXiv:1103.4609 [astro-ph.CO]].
463 Yunes, N., Miller, M.C. and Thornburg, J., “Effect of massive perturbers on extreme mass-ratio inspiral waveforms”, Phys. Rev. D, 83, 044030 (2011). [External LinkDOI], [External LinkADS], [External LinkarXiv:1010.1721 [astro-ph.GA]].
464 Yunes, N., O’Shaughnessy, R., Owen, B.J. and Alexander, S., “Testing gravitational parity violation with coincident gravitational waves and short gamma-ray bursts”, Phys. Rev. D, 82, 064017 (2010). [External LinkDOI], [External LinkarXiv:1005.3310 [gr-qc]].
465 Yunes, N., Pani, P. and Cardoso, V., “Gravitational waves from quasicircular extreme mass-ratio inspirals as probes of scalar-tensor theories”, Phys. Rev. D, 85, 102003 (2012). [External LinkDOI], [External LinkADS], [External LinkarXiv:1112.3351 [gr-qc]].
466 Yunes, N. and Pretorius, F., “Dynamical Chern-Simons modified gravity: Spinning black holes in the slow-rotation approximation”, Phys. Rev. D, 79, 084043 (2009). [External LinkDOI], [External LinkADS], [External LinkarXiv:0902.4669 [gr-qc]].
467 Yunes, N. and Pretorius, F., “Fundamental theoretical bias in gravitational wave astrophysics and the parameterized post-Einsteinian framework”, Phys. Rev. D, 80, 122003 (2009). [External LinkDOI], [External LinkADS], [External LinkarXiv:0909.3328 [gr-qc]].
468 Yunes, N., Pretorius, F. and Spergel, D., “Constraining the evolutionary history of Newton’s constant with gravitational wave observations”, Phys. Rev. D, 81, 064018 (2010). [External LinkDOI], [External LinkADS], [External LinkarXiv:0912.2724 [gr-qc]].
469 Yunes, N., Psaltis, D., Özel, F. and Loeb, A., “Constraining parity violation in gravity with measurements of neutron-star moments of inertia”, Phys. Rev. D, 81, 064020 (2010). [External LinkDOI], [External LinkADS], [External LinkarXiv:0912.2736 [gr-qc]].
470 Yunes, N. and Sopuerta, C.F., “Perturbations of Schwarzschild black holes in Chern-Simons modified gravity”, Phys. Rev. D, 77, 064007 (2008). [External LinkDOI], [External LinkADS], [External LinkarXiv:0712.1028 [gr-qc]].
471 Yunes, N. and Sopuerta, C.F., “Testing Effective Quantum Gravity with Gravitational Waves from Extreme Mass Ratio Inspirals”, J. Phys.: Conf. Ser., 228, 012051 (2010). [External LinkDOI], [External LinkarXiv:0909.3636 [gr-qc]].
472 Yunes, N. and Spergel, D.N., “Double-binary-pulsar test of dynamical Chern-Simons modified gravity”, Phys. Rev. D, 80, 042004 (2009). [External LinkDOI], [External LinkADS], [External LinkarXiv:0810.5541 [gr-qc]].
473 Yunes, N. and Stein, L.C., “Nonspinning black holes in alternative theories of gravity”, Phys. Rev. D, 83, 104002 (2011). [External LinkDOI], [External LinkADS], [External LinkarXiv:1101.2921 [gr-qc]].
474 Zaglauer, H.W., “Neutron stars and gravitational scalars”, Astrophys. J., 393, 685–696 (1992). [External LinkDOI].
475 Zakharov, V.I., “Linearized gravitation theory and the graviton mass”, JETP Lett., 12, 312 (1970). [External LinkADS].