No.1082
•\Œ»˜_‚Æ”ñ‰ÂŠ·’²˜a‰ðÍ
Representation Theory and Noncommutative Harmonic Analysis
Œ¤‹†W‰ï•ñW
@
1998/08/03`1998/08/06
ŽR‰º@@”Ž
Hiroshi Yamashita
@
–ځ@ŽŸ
@
1. ’¼ŒðLieŠÂ‚É‚¨‚¯‚és—ñŽ®‚ÆPfaffian‚ÌŠÖŒWŽ® (•\Œ»˜_‚Æ”ñ‰ÂŠ·’²˜a‰ðÍ)----------------------------------------------------------------1
@@@@‹ž“s‘åŠw—Šw•”@@@ˆÉ“¡ –«@(Itoh, Minoru)
@
2. Commuting difference operators arising from the elliptic $C^{(1)}_2$-face model (Representation Theory and Noncommutative Harmonic Analysis)---16
@@@@“Œ–k‘åŠw—Šw•” / ‰ªŽR—‰È‘åŠw—Šw•” / “Œ–k‘åŠw—Šw•”@@@’·’Jì _Ži / ’r“c Šx / ‹e’n “N–ç@(Hasegawa, Koji / Ikeda, Takeshi / Kikuchi, Tetsuya)
@
3. –ʑ㐔‚ƃeƒ“ƒ\ƒ‹Œ— (•\Œ»˜_‚Æ”ñ‰ÂŠ·’²˜a‰ðÍ)--------------------------------------------------------------------------------------34
@@@@–¼ŒÃ‰®‘åŠw‘½Œ³”—‰ÈŠwŒ¤‹†‰È@@@—Ñ FG@(Hayashi, Takahiro)
@
4. UNITARY REPRESENTATIONS AND 1-COCYCLES ON THE GROUP OF DIFFEOMORPHISMS (Representation Theory and Noncommutative Harmonic Analysis)---48
@@@@•Ÿˆä‘åŠw‹³ˆçŠw•”@@@‰º‘º G²@(Shimomura, Hiroaki)
@
5. ŽÀ‘㐔ŒQ‚̋Зë‹O“¹‚Ì—U“±‚ÆŠø‘½—l‘̏ã‚ÌK‹O“¹‚̕•ï (•\Œ»˜_‚Æ”ñ‰ÂŠ·’²˜a‰ðÍ)-------------------------------------------------------62
@@@@“Œ‹ž“d‹@‘åŠwHŠw•”@@@‘¾“c ‘ô–ç@(Ohta, Takuya)
@
6. THE BEHAVIOR OF INVARIANT INTEGRALS ON SEMISIMPLE SYMMETRIC SPACES AND ITS APPLICATION (Representation Theory and Noncommutative Harmonic Analysis)---74
@@@@‘ñB‘åŠwHŠw•” / –k—¢‘åŠwŠî‘b‹³ˆçŠw•”@@@Â–Ø –Î / ‰Á“¡ ––L@(Aoki, Shigeru / Kato, Suehiro)
@
7. Invariant hyperfunctions on the prehomogeneous vector space acting the group $\mathbf{GL}_n(\mathbb{R})~\mathbf{SO}_{p,q}(\mathbb{R})$ (Representation Theory and Noncommutative Harmonic Analysis)---93
@@@@Šò•Œ‘åŠwHŠw•”@@@Žº ­˜a@(Muro, Masakazu)
@
8. Contravariant forms on generalized Verma modules and $b$-functions : an application to the unitarizabilities of irreducible quotient of generalized Verma modules (Representation Theory and Noncommutative Harmonic Analysis)---102
@@@@–kŠC“¹‘åŠw—ŠwŒ¤‹†‰È”ŠwêU@@@˜a’n ‹Pm@(Wachi, Akihito)
@
9. Quantum deformations of certain prehomogeneous vector spaces (Representation Theory and Noncommutative Harmonic Analysis)-------119
@@@@L“‡‘åŠw—Šw•” / L“‡‘åŠw—Šw•” / L“‡‘åŠw—Šw•”@@@Ž†“c “ÖŽj / X“c —ǍK / ’Jè r”V@(Kamita, Atsushi / Morita, Yoshiyuki / Tanisaki, Toshiyuki)
@
10. COMPACTIFICATIONS OF SYMMETRIC VARIETIES AND APPLICATIONS TO REPRESENTATION THEORY (Representation Theory and Noncommutative Harmonic Analysis)---137
@@@@—§‹³‘åŠw—Šw•”@@@‰F‘ò ’B@(Uzawa, Tohru)
@
11. “™Ž¿ã‚ÌRiesz’´”Ÿ”‚ÆGindikin-WallachW‡‚̍\‘¢ (•\Œ»˜_‚Æ”ñ‰ÂŠ·’²˜a‰ðÍ)-----------------------------------------------------143
@@@@‹ž“s‘åŠw—Šw•”@@@ˆÉŽt ‰p”V@(Ishi, Hideyuki)
@
12. Šø‘½—l‘̏ã‚Ì2Ží—Þ‚Ì‹O“¹‚ÌŒð‚í‚è (•\Œ»˜_‚Æ”ñ‰ÂŠ·’²˜a‰ðÍ)-----------------------------------------------------------------------152
@@@@‹ãB‘åŠw”—ŠwŒ¤‹†‰È@@@—Ž‡ Œ[”V@(Ochiai, Hiroyuki)
@