No.1689
•\Œ»˜_‚Æ‘g‡‚¹˜_
Representation Theory and Combinatorics
RIMS Œ¤‹†W‰ï•ñW
@
2009/08/25`2009/08/28
X“c@‰pÍ
Hideaki Morita
@
–ځ@ŽŸ
@
1. Visible actions on multiplicity-free spaces (Representation Theory and Combinatorics)---------------------------------------------1
@@@@‘ˆî“c‘åŠw—HŠwp‰@ŠîŠ²—HŠw•””Šw‰È@@@ù–Ø W–²@(SASAKI,Atsumu)
@
2. $K$-theoretic analogue of Schur's $Q$-functions and isotropic Grassmannians (Representation Theory and Combinatorics)------------10
@@@@‰ªŽR—‰È‘åŠw—Šw•” / ‰ªŽR‘åŠw‹³ˆçŠw•”@@@’r“c Šx / ¬£ O@(Ikeda,Takeshi / Naruse,Hiroshi)
@
3. Lefschetz elements of Artinian Gorenstein algebras and Hessians of homogeneous polynomials (Representation Theory and Combinatorics)---16
@@@@‹ž“s‘åŠwHŠwŒ¤‹†‰È@@@‘O–ì rº@(Maeno,Toshiaki)
@
4. An algorithm which generates standard tableaux for a shifted Young diagram with uniform probability (Representation Theory and Combinatorics)---26
@@@@’t“à–k¯Šw‰€‘åŠw@@@’‡“c Œ¤“o@(NAKADA,KENTO)
@
5. $(q, t)$-Deformations of Multivariate Hook Product Formulae (Representation Theory and Combinatorics)----------------------------33
@@@@–¼ŒÃ‰®‘åŠw‘½Œ³”—‰ÈŠwŒ¤‹†‰È@@@‰ª“c ‘ˆê@(OKADA,Soichi)
@
6. THE LIE MODULE OF THE SYMMETRIC GROUP (Representation Theory and Combinatorics)--------------------------------------------------47
@@@@MATHEMATICAL INSTITUTE, OXFORD / DEPARTMENT OF MATHEMATICS, NATIONAL UNIVERSITY OF SINGAPORE@@@ERDMANN,KARIN / TAN,KAI MENG
@
7. LITTLEWOOD-RICHARDSON COEFFICIENTS AND EXTREMAL WEIGHT CRYSTALS (Representation Theory and Combinatorics)------------------------50
@@@@DEPARTMENT OF MATHEMATICS, UNIVERSITY OF SEOUL@@@KWON,JAE-HOON
@
8. ON TENSOR PRODUCTS OF MIRKOVIC-VILONEN POLYTOPES IN TYPE A (Representation Theory and Combinatorics)-----------------------------61
@@@@“Œ‹ž‘åŠw‘åŠw‰@”—‰ÈŠwŒ¤‹†‰È / ’}”g‘åŠw‘åŠw‰@”—•¨Ž¿‰ÈŠwŒ¤‹†‰È / ’}”g‘åŠw‘åŠw‰@”—•¨Ž¿‰ÈŠwŒ¤‹†‰È@@@Ä“¡ ‹`‹v / ²Š_ ‘å•ã / “à“¡ ‘@(Saito,Yoshihisa / Sagaki,Daisuke / Naito,Satoshi)
@
9. On an edge-signed generalization of chordal graphs and free multiplicities on braid arrangements (Representation Theory and Combinatorics)---78
@@@@“Œ‹ž‘åŠwî•ñ—HŠwŒnŒ¤‹†‰È@@@À“c ‘׉p@(Numata,Yasuhide)
@
10. Primitive derivation, Coxeter multiarrangements and some examples (Representation Theory and Combinatorics)---------------------89
@@@@‹ž“s‘åŠw—ŠwŒ¤‹†‰È@@@ˆ¢•” ‘ñ˜Y@(Abe,Takuro)
@
11. Iterated integrals and relations of multiple polylogarithms (Representation Theory and Combinatorics)--------------------------101
@@@@‘ˆî“c‘åŠw—HŠwp‰@ / ‘ˆî“c‘åŠw—HŠwp‰@@@@‘åˆä Žü / ã–ì ŠìŽO—Y@(OI,Shu / UENO,Kimio)
@
12. Multiple Bernoulli polynomials and multiple zeta-functions of root systems (Representation Theory and Combinatorics)-----------117
@@@@–¼ŒÃ‰®‘åŠw‘åŠw‰@‘½Œ³”—‰ÈŠwŒ¤‹†‰È / –¼ŒÃ‰®‘åŠw‘åŠw‰@‘½Œ³”—‰ÈŠwŒ¤‹†‰È / Žñ“s‘åŠw“Œ‹ž‘åŠw‰@—HŠwŒ¤‹†‰È@@@¬X –õ / ¼–{ k“ñ / ’Ѻ ”Ž•¶@(Komori,Yasushi / Matsumoto,Kohji / Tsumura,Hirofumi)
@
13. KERNEL FUNCTION AND QUANTUM ALGEBRAS (Representation Theory and Combinatorics)-------------------------------------------------133
@@@@/ ã’q‘åŠw—HŠw•” / “Œ‹ž‘åŠw”—‰ÈŠwŒ¤‹†‰È / “Œ‹ž‘åŠw”—‰ÈŠwŒ¤‹†‰È / _ŒË‘åŠw—ŠwŒ¤‹†‰È@@@/ ¯–ì •à / ŽÄŒ´ ~ / ”’Î ˆê / –ö“c L‘¾˜Y@(FEIGIN,Boris / HOSHINO,Ayumu / SHIBAHARA,Jun / SHIRAISHI,Junichi / YANAGIDA,Shintarou)
@
14. —LŒÀŒQã‚Ì’²˜a‰ðÍ‚Æ“ŒvŠw‚ÉŠÖ‚·‚é˜b‘è (•\Œ»˜_‚Æ‘g‡‚¹˜_)----------------------------------------------------------------------153
@@@@–h‰q‘åŠwZ‘‡‹³ˆçŠwŒQ”Šw‹³ˆçŽº@@@…ì —TŽi@(Mizukawa,Hiroshi)
@
15. Finite Gelfand pairs and Markov chain Monte-Carlo method (Representation Theory and Combinatorics)-----------------------------164
@@@@–kŠC“¹‘åŠw—ŠwŒ¤‹†‰@@@@‹g“c ’ms@(YOSHIDA,Tomoyuki)
@