No.1211
”÷•ª•û’öŽ®‚Ì‘Q‹ß‰ðÍ‚Æ’´‹ÇŠ‰ðÍ
Asymptotic Analysis and Microlocal Analysis of PDE
Œ¤‹†W‰ï•ñW
@
2000/10/16`2000/10/20
ŒË£ M”V, ŒFƒm‹½ ’¼l, ‰ª“c –õ‘¥, “à“c ‘f•v
Nobuyuki Tose, Naoto Kumanogo, Yasunori Okada, Motoo Uchida
@
–ځ@ŽŸ
@
1. Operator Algebras with Hierarchies of Symbols (Asymptotic Analysis and Microlocal Analysis of PDE)--------------------------------1
@@@@Potsdam University@@@Schulze,B.-W.
@
2. Operator Algebras with Hierarchies of Symbols (Asymptotic Analysis and Microlocal Analysis of PDE)--------------------------------3
@@@@Institute for Mathematics, University of Potsdam@@@Schulze,B.-W.
@
3. Asymptotic Expansions for Solutions to Semilinear Fuchsian Equations (Asymptotic Analysis and Microlocal Analysis of PDE)--------19
@@@@Institute for Mathematics, University of Potsdam@@@Witt,Ingo
@
4. ASYMPTOTIC ALGEBRAS (Asymptotic Analysis and Microlocal Analysis of PDE)---------------------------------------------------------21
@@@@Institute for Mathematics, University of Potsdam@@@Witt,Ingo
@
5. Edge Sobolev Spaces, Weakly Hyperbolic Equations, and Branching of Singularities (Asymptotic Analysis and Microlocal Analysis of PDE)---34
@@@@’}”g‘åŠw”ŠwŒn@@@Dreher,Michael/Witt,Ingo
@
6. Mild Solutions to the discrete Boltzmann equation with linear and quadratic terms for the initial data with locally finite entropy (Asymptotic Analysis and Microlocal Analysis of PDE)---44
@@@@’}”g‘åŠw”ŠwŒn@@@ŽRè –ž@(Yamazaki,Mitsuru)
@
7. THE MICROLOCAL SMOOTHING EFFECT FOR SCHRODINGER TYPE OPERATORS IN GEVREY CLASSES (Asymptotic Analysis and Microlocal Analysis of PDE)---54
@@@@’}”g‘åŠw”ŠwŒn/’}”g‘åŠw”ŠwŒn@@@Š’J –M•F@(Kajitani,Kunihiko/Taglialatela,Giovanni)
@
8. ƒ}ƒCƒNƒ‘o‹ÈŒ`ì—p‘f‚Ì”ñ³‘¥“x (”÷•ª•û’öŽ®‚Ì‘Q‹ß‰ðÍ‚Æ’´‹ÇŠ‰ðÍ)----------------------------------------------------------------56
@@@@–h‰q‘åŠwZ@@@‘ʼnz Œh—S@(Uchikoshi,Keisuke)
@
9. Hartogs' phenomena for microfunctions with holomorphic parameters (Asymptotic Analysis and Microlocal Analysis of PDE)-----------66
@@@@/ç—t‘åŠw—Šw•”/Œcœä‹`m‘åŠwŒoÏŠw•”@@@/‰ª“c –õ‘¥/ŒË£ M”V@(Liess,Otto/Okada,Yasunori/Tose,Nobuyuki)
@
10. Solvability of a class of differential equations in the sheaf of microfunctions with holomorphic parameters (Asymptotic Analysis and Microlocal Analysis of PDE)---76
@@@@“Œ‹ž‘åŠw”—‰ÈŠwŒ¤‹†‰È/“Œ‹ž‘åŠw”—‰ÈŠwŒ¤‹†‰È@@@•Ð‰ª ´b/‘D‰z ³‘¾@(Kataoka,Kiyoomi/Funakoshi,Shota)
@
11. Microlocalization of Topological Boundary Value Morphism and Regular-Specializable Systems (Asymptotic Analysis and Microlocal Analysis of PDE)---86
@@@@“Œ‹ž‘åŠw”—‰ÈŠwŒ¤‹†‰È@@@ŽRè W@(Yamazaki,Susumu)
@
12. A Sharp Existence and Uniqueness Theorem for Linear Fuchsian Partial Differential Equations (Asymptotic Analysis and Microlocal Analysis of PDE)---96
@@@@ã’q‘åŠw—HŠw•”@@@Lope,Jose Ernie C.
@
13. On the Singular Solutions of Nonlinear Singular Partial Differential Equations (Asymptotic Analysis and Microlocal Analysis of PDE)---105
@@@@ã’q‘åŠw—HŠw•”@@@“cŒ´ G•q@(Tahara,Hidetoshi)
@
14. Existence of singular solutions with bounds of linear partial differential equations in the complex domain (Asymptotic Analysis and Microlocal Analysis of PDE)---112
@@@@ã’q‘åŠw—HŠw•”@@@‘å“à ’‰@(Ouchi,Sunao)
@
15. AN ELEMENTARY APPROACH TO THE MICROSUPPORT-THEORY OF HOLOMORPHIC SOLUTION COMPLEXES FOR $\mathcal{E}_X$- AND $\mathcal{E}^{\Bbb R}_X$-MODULES (Asymptotic Analysis and Microlocal Analysis of PDE)---120
@@@@“Œ‹ž‘åŠw”—‰ÈŠwŒ¤‹†‰È@@@•Ð‰ª ´b@(Kataoka,Kiyoomi)
@
16. ’²˜aŠÖ”‚ÌFourier-EhrenpreisÏ•ª•\Ž¦ (”÷•ª•û’öŽ®‚Ì‘Q‹ß‰ðÍ‚Æ’´‹ÇŠ‰ðÍ)--------------------------------------------------------122
@@@@ç—tH‹Æ‘åŠwŽ©‘RŒn@@@ŽRª ‰pŽi@(Yamane,Hideshi)
@
17. SINGULARITIES OF THE BERGMAN KERNEL AND NEWTON POLYHEDRA (Asymptotic Analysis and Microlocal Analysis of PDE)------------------129
@@@@‹ãB‘åŠw”—ŠwŒ¤‹†‰@@@@_–{ ä@(Kamimoto,Joe)
@
18. Explicit formulas for the reproducing kernels of the space of harmonic polynomials in the case of real rank 1 (Asymptotic Analysis and Microlocal Analysis of PDE)---133
@@@@Œà‘åŠwŽÐ‰ïî•ñŠw•”@@@˜a“c —ÁŽq@(Wada,Ryoko)
@
19. Construction of Hyperfunction Solutions to Invariant Linear Differential Equations (Asymptotic Analysis and Microlocal Analysis of PDE)---143
@@@@Šò•Œ‘åŠwHŠw•”@@@Žº ­˜a@(Muro,Masakazu)
@
20. Unimodal—áŠOŒ^“ÁˆÙ“_‚É‚¨‚¯‚é‘㐔“I‹ÇŠƒRƒzƒ‚ƒƒW[—Þ (”÷•ª•û’öŽ®‚Ì‘Q‹ß‰ðÍ‚Æ’´‹ÇŠ‰ðÍ)----------------------------------------155
@@@@‚¨’ƒ‚̐…—Žq‘åŠw‘åŠw‰@/VŠƒ‘åŠwHŠw•”î•ñHŠw‰È@@@’†‘º –퐶/“c“‡ Tˆê@(Nakamura,Yayoi/Tajima,Shinichi)
@
21. A new proof of Carlson's theorem by Plana's summation formula (Asymptotic Analysis and Microlocal Analysis of PDE)-------------166
@@@@ã’q‘åŠw—HŠw•”/ã’q‘åŠw—HŠw•”@@@‹g–ì –M¶/z–K «”́@(Yoshino,Kunio/Suwa,Masanori)
@
22. Gevrey Asymptotic Theory for Singular 1st Order Linear PDE (Asymptotic Analysis and Microlocal Analysis of PDE)----------------175
@@@@–¼ŒÃ‰®‘åŠw‘½Œ³”—‰ÈŠwŒ¤‹†‰È@@@“ú”ä–ì ³Ž÷@(Hibino,Masaki)
@
23. The Borel Sum of Divergent Barnes Hypergeometric Series and its Application to a Partial Differential Equation (Asymptotic Analysis and Microlocal Analysis of PDE)---185
@@@@–¼ŒÃ‰®‘åŠw‘½Œ³”—‰ÈŠwŒ¤‹†‰È@@@Žs‰„ –M•v@(Ichinobe,Kunio)
@
24. Vanishing Theorems in Hyperasymptotic Analysis (Asymptotic Analysis and Microlocal Analysis of PDE)----------------------------195
@@@@‚¨’ƒ‚̐…—Žq‘åŠw—Šw•”@@@^“‡ Gs@(Majima,Hideyuki)
@
25. On the exact WKB analysis for operators admitting infnitely many phases (Asymptotic Analysis and Microlocal Analysis of PDE)---197
@@@@‹ß‹E‘åŠw—HŠw•”/‹ž“s‘åŠw”—‰ðÍŒ¤‹†Š/‹ž“s‘åŠw—ŠwŒ¤‹†‰È/‹ž“s‘åŠw”—‰ðÍŒ¤‹†Š@@@Â–Ø ‹MŽj/‰Í‡ —²—T/¬’r ’B–ç/’|ˆä ‹`ŽŸ@(Aoki,Takashi/Kawai,Takahiro/Koike,Tatsuya/Takei,Yoshitsugu)
@