* このページに掲載している原稿は 速報ファイル です。
* These papers are "unissued version".
RIMS Kôkyûroku
No.2121
非線形発展方程式を基盤とする現象解析に向けた数学理論の展開
Theoretical Developments to Phenomenon Analyses based on Nonlinear Evolution Equations
RIMS 共同研究(公開型)
 
2018/10/10〜2018/10/12
白川 健
Ken Shirakawa
 
目 次
 
1. Singular limit problem for the Allen-Cahn equation with a zero Neumann boundary condition on non-convex domains (Theoretical Developments to Phenomenon Analyses based on Nonlinear Evolution Equations)---
    九州大学   可香谷 隆 (Kagaya,Takashi )
 
2. Singular limit problem for the Navier-Stokes equations in a curved thin domain (Theoretical Developments to Phenomenon Analyses based on Nonlinear Evolution Equations)---
    東京大学大学院数理科学研究科   三浦 達彦 (Miura,Tatsu-Hiko )
 
3. A FREE BOUNDARY PROBLEM FOR REACTION DIFFUSION EQUATION WITH POSITIVE BISTABLE NONLINEARITY (Theoretical Developments to Phenomenon Analyses based on Nonlinear Evolution Equations)---
    早稲田大学大学院基幹理工学研究科 / 早稲田大学基幹理工学部数学科 / 早稲田大学理工学術院   遠藤 真帆 / 兼子 裕大 / 山田 義雄 (ENDO,MAHO / KANEKO,YUKI / YAMADA,YOSHIO )
 
4. Spreading and vanishing in a free boundary problem for nonlinear diffusion equations with a given forced moving boundary (Theoretical Developments to Phenomenon Analyses based on Nonlinear Evolution Equations)---
    沼津工業高等専門学校教養科   松澤 寛 (Matsuzawa,Hiroshi )
 
5. Remarks on test function methods for blowup of solutions to semilinear evolution equations in sectorial domain (Theoretical Developments to Phenomenon Analyses based on Nonlinear Evolution Equations)---
    東京理科大学理工学部数学科   側島 基宏 (Sobajima,Motohiro )
 
6. Minimizing movement approach without using distance function for evolving spirals by the crystalline curvature with driving force (Theoretical Developments to Phenomenon Analyses based on Nonlinear Evolution Equations)---
    群馬大学   大塚 岳 (Ohtsuka,Takeshi )
 
7. Conservative finite difference schemes for one-dimensional nonlinear thermoelasticity (Theoretical Developments to Phenomenon Analyses based on Nonlinear Evolution Equations)---
    大分大学   吉川 周二 (Yoshikawa,Shuji )
 
8. Equations and dynamic boundary conditions of Allen-Cahn type and their approximation with Robin boundary conditions (Theoretical Developments to Phenomenon Analyses based on Nonlinear Evolution Equations)---
    Department of Mathematics, The Chinese University of Hong Kong   LAM,KEI FONG
 
9. The constrained total variation flow (Theoretical Developments to Phenomenon Analyses based on Nonlinear Evolution Equations)------
    Departament d'Analisi Matematica, Universitat Valencia   Moll,Salvador
 
10. Mathematical analysis for a model system of complex fluids (Theoretical Developments to Phenomenon Analyses based on Nonlinear Evolution Equations)---
    早稲田大学 / 日立製作所   川島 秀一 / 谷上 勝吾 (Kawashima,Shuichi / Taniue,Shogo )
 
11. A one dimensional free boundary problem describing swelling of a pocket of water in porous materials (Theoretical Developments to Phenomenon Analyses based on Nonlinear Evolution Equations)---
    長崎大学   熊崎 耕太 (Kumazaki,Kota )
 
12. On the soliton decomposition of solutions for the energy critical parabolic equation (Theoretical Developments to Phenomenon Analyses based on Nonlinear Evolution Equations)---
    大阪大学   石渡 通徳 (Ishiwata,Michinori )