RIMS Kôkyûroku
No.2129
Intelligence of Low-dimensional Topology
RIMS ‹¤“¯Œ¤‹†iŒöŠJŒ^j
@
2019/05/22`2019/05/24
‘å’΁@’m’‰
Tomotada Ohtsuki
@
–ځ@ŽŸ
@
1. On generalizations of the Conway-Gordon theorems (Intelligence of Low-dimensional Topology)---------------------------------------1
@@@@“Œ‹ž—Žq‘åŠwŒ»‘㋳—{Šw•”@@@Vš  —º@(Nikkuni,Ryo )
@
2. Real algebraic links in $S^{3}$ and simple branched covers (Intelligence of Low-dimensional Topology)----------------------------13
@@@@‘åã‘åŠw@@@Bode,Benjamin
@
3. Hidden symmetries of hyperbolic links (Intelligence of Low-dimensional Topology)-------------------------------------------------29
@@@@“ޗǍH‹Æ‚“™ê–åŠwZ@@@‹g“c ‚Í‚ñ@(Yoshida,Han )
@
4. Positive flow-spines and contact structures - a short summary (Intelligence of Low-dimensional Topology)-------------------------34
@@@@Œc—¶‹`m‘åŠw—HŠw•” / Œc—¶‹`m‘åŠwŒoÏŠw•” / L“‡‘åŠw—ŠwŒ¤‹†‰È / ’†‰›‘åŠw—HŠw•”@@@Îˆä ˆê•½ / Îì ¹Ž¡ / ŒÃ‰F“c —IÆ / ’¼] ‰›Š°@(Ishii,Ippei / Ishikawa,Masaharu / Koda,Yuya / Naoe,Hironobu )
@
5. A HOMFLY-PT type invariant for integral homology 3-spheres (Intelligence of Low-dimensional Topology)----------------------------41
@@@@‹ž“s‘åŠw”—‰ðÍŒ¤‹†Š@@@’Ò r•ã@(Tsuji,Shunsuke)
@
6. RECENT PROGRESSES ON THE VOLUME CONJECTURES FOR CERTAIN QUANTUM INVARINATS (Intelligence of Low-dimensional Topology)------------48
@@@@Texas A&M University@@@Yang,Tian
@
7. Diagrammatic Algebra (Intelligence of Low-dimensional Topology)------------------------------------------------------------------55
@@@@University of South Alabama / ‘åã‘åŠw@@@Carter J. Scott / Š™“c@¹ˆê@(Carter,J. Scott / Kamada,Seiichi )
@
8. The Heegaard Floer complexes of a trivalent graph defined on two Heegaard diagrams (Intelligence of Low-dimensional Topology)----69
@@@@“Œ‹ž‘åŠw”—‰ÈŠwŒ¤‹†‰È@@@é¸ ‰€‰€@(Bao,Yuanyuan)
@
9. Divisibility of Leefs class and its relation with Rasmussen's invariant (Intelligence of Low-dimensional Topology)--------------83
@@@@“Œ‹ž‘åŠw”—‰ÈŠwŒ¤‹†‰È@@@²–ì Šxl@(Sano,Taketo )
@
10. Instanton Floer theory and the homology cobordism group (Intelligence of Low-dimensional Topology)------------------------------97
@@@@–¾Ž¡‘åŠwŒ¤‹†E’màí—ª‹@\ / “Œ‹ž‘åŠw”—‰ÈŠwŒ¤‹†‰È / “Œ‹ž‘åŠw”—‰ÈŠwŒ¤‹†‰È@@@–ìè —Y‘¾ / ²“¡ ŒõŽ÷ / ’JŒû ³Ž÷@(Nozaki,Yuta / Sato,Kouki / Taniguchi,Masaki )
@
11. Local Moves Generating Writhe Polynomials of Virtual Knots (Intelligence of Low-dimensional Topology)--------------------------107
@@@@‘åã“d‹C’ʐM‘åŠw‘åŠw‰@HŠwŒ¤‹†‰È / _ŒË‘åŠw‘åŠw‰@—ŠwŒ¤‹†‰È / _ŒË‘åŠw‘åŠw‰@—ŠwŒ¤‹†‰È@@@’†‘º ‘ñŽi / ’†¼ N„ / ²“¡ i@(Nakamura,Takuji / Nakanishi,Yasutaka / Satoh,Shin)
@
12. Problems on Low-dimensional Topology, 2019 (Intelligence of Low-dimensional Topology)------------------------------------------117
@@@@‹ž“s‘åŠw@@@‘å’Î ’m’‰@(Ohtsuki,Tomotada)
@