RIMS Kôkyûroku
No.2101
’´‹ÇŠ‰ðÍ‚Æ‘Q‹ß‰ðÍ
Microlocal analysis and asymptotic analysis
RIMS ‹¤“¯Œ¤‹†iŒöŠJŒ^j
@
2017/10/16`2017/10/20
‰ª“c@–õ‘¥
Yasunori Okada
@
–ځ@ŽŸ
@
1. Linear continuous operators acting on the space of entire functions of a given order (Microlocal analysis and asymptotic analysis)---1
@@@@‹ß‹E‘åŠw / ç—t‘åŠw / Schmid College of Science and Technology, Chapman University / ‹ß‹E‘åŠw@@@Â–Ø ‹MŽj / Î‘º —²ˆê / Struppa Daniele C. / “à“c  •—@(Aoki,Takashi / Ishimura,Ryuichi / Struppa,Daniele C. / Uchida,Shofu)
@
2. Hyperfunctions and Cech-Dolbeault cohomology in the microlocal point of view (Microlocal analysis and asymptotic analysis)--------7
@@@@–kŠC“¹‘åŠw@@@–{‘½ ®•¶@(Honda,Naofumi)
@
3. Experimental observation on $k$-summability of divergent solutions of the heat equation with $k>1$ (Microlocal analysis and asymptotic analysis)---13
@@@@ˆ¤’m‹³ˆç‘åŠw / –¼ŒÃ‰®‘åŠw@@@Žs‰„ –M•v / ŽO‘î ³•@(Ichinobe,Kunio / Miyake,Masatake)
@
4. VorosŒW”‚ƈʑŠ“I‘Q‰»Ž® (’´‹ÇŠ‰ðÍ‚Æ‘Q‹ß‰ðÍ)-----------------------------------------------------------------------------------23
@@@@–¼ŒÃ‰®‘åŠw‘åŠw‰@‘½Œ³”—‰ÈŠwŒ¤‹†‰È / _ŒË‘åŠw‘åŠw‰@—ŠwŒ¤‹†‰È”ŠwêU / _ŒË‘åŠw‘åŠw‰@—ŠwŒ¤‹†‰È”ŠwêU@@@Šâ–Ø k•½ / ¬’r ’B–ç / ’|ˆä —D”üŽq@(Iwaki,Kohei / Koike,Tatsuya / Takei,Yumiko)
@
5. Some remarks on Hayato Chiba's theory about Kuramoto conjecture (Microlocal analysis and asymptotic analysis) -------------------39
@@@@“Œ‹ž‘åŠw / “Œ‹ž‘åŠw@@@•Ð‰ª ´b / ”n“c —D@(Kataoka,Kiyoomi / Mada,Yu)
@
6. Phase space Feynman path integrals of parabolic type (Microlocal analysis and asymptotic analysis)-------------------------------52
@@@@HŠw‰@‘åŠwî•ñŠw•”@@@ŒFƒm‹½ ’¼l@(Kumano-go,Naoto)
@
7. On Laplace and Residue integral representations of GKZ hypergeometric functions (Microlocal analysis and asymptotic analysis) ---64
@@@@“Œ‹ž‘åŠw”—‰ÈŠwŒ¤‹†‰È@@@¼Œ´ É‰h@(Matsubara-Heo,Saiei-Jaeyeong)
@
8. An attempt to compute holonomic systems for Feynman integrals in two-dimensional space-time (Microlocal analysis and asymptotic analysis)---77
@@@@“Œ‹ž—Žq‘åŠw@@@‘刢‹v r‘¥@(Oaku,Toshinori)
@
9. A formal solvability of a coupling equation for PDEs of Briot-Bouquet type (Microlocal analysis and asymptotic analysis)---------91
@@@@ç—t‘åŠw / IRMA, University of Strasbourg / ã’q‘åŠw@@@‰ª“c –õ‘¥ / Schafke Reinhard / “cŒ´ G•q@(Okada,Yasunori / Schafke,Reinhard / Tahara,Hidetoshi)
@
10. FuchsŒ^•û’öŽ®‚̐ڑ±–â‘è (’´‹ÇŠ‰ðÍ‚Æ‘Q‹ß‰ðÍ)----------------------------------------------------------------------------------98
@@@@é¼‘åŠw—Šw•”@@@‘哇 —˜—Y@(Oshima,Toshio)
@
11. Relative Dolbeault cohomology and Sato hyperfunctions (Microlocal analysis and asymptotic analysis)----------------------------119
@@@@–kŠC“¹‘åŠw”Šw‹³Žº@@@z–K —§—Y@(Suwa,Tatsuo)
@
12. A method for computing generic Le numbers associated with non-isolated hypersurface singulrities [singularities] (Microlocal analysis and asymptotic analysis)---133
@@@@’}”g‘åŠw@@@“c“‡ Tˆê@(Tajima,Shinichi)
@
13. The confluent hypergeometric function and WKB solutions (Microlocal analysis and asymptotic analysis)--------------------------139
@@@@‹ß‹E‘åŠw@@@‚‹´ •á@@(Takahashi,Toshinori)
@
14. Extension of the exact steepest descent method to the middle convolution (Microlocal analysis and asymptotic analysis) --------146
@@@@“¯ŽuŽÐ‘åŠw@@@’|ˆä ‹`ŽŸ@(Takei,Yoshitsugu)
@
15. Singularities of gravity water waves (Microlocal analysis and asymptotic analysis)---------------------------------------------153
@@@@–h‰q‘åŠwZ”Šw‹³ˆçŽº@@@‘ʼnz Œh—S@(Uchikoshi,Keisuke)
@
16. Laplace hyperfunctions from the viewpoint of Cech-Dolbeault cohomology (Microlocal analysis and asymptotic analysis) ----------157
@@@@“ú–{‘åŠw@@@”~“c k•½@(Umeta,Kohei)
@
17. $q$-analogue of a system of equations from geometry (Microlocal analysis and asymptotic analysis)------------------------------165
@@@@ŽÅ‰YH‹Æ‘åŠw / ŽÅ‰YH‹Æ‘åŠw@@@ŽR–{ ƒ / ŽRàV _Ži@(Yamamoto,Jun / Yamazawa,Hiroshi)
@
18. Movable Singularity and Blowup of Semi linear Wave Equation (Microlocal analysis and asymptotic analysis)----------------------178
@@@@L“‡‘åŠw@@@‹g–ì ³Žj@(Yoshino,Masafumi)
@